1Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
5Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
6Mitochondrion 2009 Nov 9: 385-93
PMID19563917
TitleAnalysis of mitochondrial DNA variants in Japanese patients with schizophrenia.
AbstractTo test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP synthase (MT-ATP6) gene that were detected only in patients but not in controls were suggested to be slightly deleterious, because (1) their original amino acid residues (AA) were highly conserved and (2) the physicochemical differences between the original and altered AA were relatively high. In addition, we detected three novel heteroplasmic variants that were potentially pathogenic. Although functional analysis is needed, rare variants in the mtDNA may convey susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
7Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014 Oct 165B: 607-17
PMID25132006
TitleMitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.
AbstractIt has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A?>?G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T?>?C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
8Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014 Oct 165B: 607-17
PMID25132006
TitleMitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.
AbstractIt has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A?>?G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T?>?C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
9Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014 Oct 165B: 607-17
PMID25132006
TitleMitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.
AbstractIt has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A?>?G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T?>?C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
10PLoS ONE 2015 -1 10: e0127280
PMID26011537
TitleMitochondrial mutations in subjects with psychiatric disorders.
AbstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.
SCZ Keywordsschizophrenia, schizophrenic
11PLoS ONE 2015 -1 10: e0127280
PMID26011537
TitleMitochondrial mutations in subjects with psychiatric disorders.
AbstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.
SCZ Keywordsschizophrenia, schizophrenic
12PLoS ONE 2015 -1 10: e0127280
PMID26011537
TitleMitochondrial mutations in subjects with psychiatric disorders.
AbstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.
SCZ Keywordsschizophrenia, schizophrenic