1J. Neurosci. Res. 2004 Sep 77: 858-66
PMID15334603
TitleMicroarray analysis of postmortem temporal cortex from patients with schizophrenia.
AbstractTo examine molecular mechanisms associated with schizophrenia this study measured expression of approximately 12,000 genes in the middle temporal gyrus from 12 subjects with schizophrenia and 14 matched normal controls. Among the most consistent changes in genes with robust expression were significant decreases in the expression of myelination-related genes MAG, PLLP (TM4SF11), PLP1, ERBB3 in subjects with schizophrenia. There was also altered expression of genes regulating neurodevelopment (TRAF4, NEUROD1, histone deacetylase 3), a circadian pacemaker (PER1), and several other genes involved in regulation of chromatin function and signaling mechanisms. These findings support the hypothesis that schizophrenia is associated with abnormalities in oligodendroglia and provide initial evidence suggesting a role for epigenetic mechanisms and altered circadian rhythms in this disorder.
SCZ Keywordsschizophrenia
2J. Neurochem. 2006 Apr 97 Suppl 1: 74-81
PMID16635253
TitleTranscriptional response to the neuroleptic-like compound Ampullosporin A in the rat ketamine model.
AbstractPsychotic disorders affecting up to 1% of the human population represent pathological changes to the metabolic homeostasis of the brain. Increasing evidence in the literature suggests complex biochemical and/or transcriptional alterations accompanying schizophrenia-like phenomena. Sub-chronic treatment with sub-anaesthetic doses of ketamine induces schizophrenia-related psychotic alterations that can be used as an animal model in the study of this disorder. Ampullosporin A belongs to a specific group of pore-forming fungal peptides, peptaibols. We focused on the analysis of molecular events occurring in the brain of ketamine-pre-treated rats after administration of Ampullosporin A with neuroleptic-like activity. The complex experimental approach allowed us to correlate the use of low molecular weight substances with a transcriptome fingerprint in the prefrontal cortex. We found 63 genes to be up-regulated and 22 genes suppressed, with transthyretin, syndecan-1 and NEUROD1 showing the highest degree of up-regulation. Our results suggest the possibility that Ampullosporin A belongs to the group of neuroleptic-like compounds, inducing massive changes in neurotransmitter receptor composition, calcium signalling cascades and second messenger systems, and leading to the plastic reorganization of brain tissue, metabolic pathways and synapses.
SCZ Keywordsschizophrenia
3PLoS ONE 2007 -1 2: e895
PMID17878930
TitleDNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons.
AbstractThe role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5' CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts--defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)--were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase.
SCZ Keywordsschizophrenia
4Stem Cell Reports 2014 Mar 2: 295-310
PMID24672753
TitleModeling hippocampal neurogenesis using human pluripotent stem cells.
AbstractThe availability of human pluripotent stem cells (hPSCs) offers the opportunity to generate lineage-specific cells to investigate mechanisms of human diseases specific to brain regions. Here, we report a differentiation paradigm for hPSCs that enriches for hippocampal dentate gyrus (DG) granule neurons. This differentiation paradigm recapitulates the expression patterns of key developmental genes during hippocampal neurogenesis, exhibits characteristics of neuronal network maturation, and produces PROX1+ neurons that functionally integrate into the DG. Because hippocampal neurogenesis has been implicated in schizophrenia (SCZD), we applied our protocol to SCZD patient-derived human induced pluripotent stem cells (hiPSCs). We found deficits in the generation of DG granule neurons from SCZD hiPSC-derived hippocampal NPCs with lowered levels of NEUROD1, PROX1, and TBR1, reduced neuronal activity, and reduced levels of spontaneous neurotransmitter release. Our approach offers important insights into the neurodevelopmental aspects of SCZD and may be a promising tool for drug screening and personalized medicine.
SCZ Keywordsschizophrenia
5J Biomed Mater Res A 2015 Feb 103: 746-61
PMID24866321
TitleGene expression analysis of laminin-1-induced neurite outgrowth in human mesenchymal stem cells derived from bone marrow.
AbstractThe mechanisms underlying the differentiation of Mesenchymal stem cells (MSCs) toward neuronal cell type are not clearly understood. Earlier, we reported that laminin-1 induces neurite outgrowth in human MSCs via c-Jun/AP-1 activation through ERK, JNK, and Akt pathways. In this study, we demonstrate that laminin-1 increases the expression of proneural gene, NEUROD1 and induces the expression of immediate-early biomarkers of neuronal cell-programming-Egr1, Egr3, PC3, and PC4. Gene expression profiling of MSCs cultured on laminin-1 and Poly-l-lysine for 12 h revealed differential regulation of 267 genes (>1.5 fold, p < 0.05), predominantly in the category of nervous system development and affected the pathways involved in TGF-?/TNF-? signaling, regulation of MAPK and JNK cascade. Data for 11 selected genes related to nervous system development was validated by real time PCR. Transcriptional regulatory network analysis revealed c-Jun as the key transcription factor regulating majority of differentially expressed genes and identified Disrupted in schizophrenia 1, as a novel target of c-Jun. Modeling and analysis of biological network showed selective induction of Growth Arrest and DNA damage 45 (GADD45B) and repression of NF-?B inhibitor A (NF?BIA). Collectively, our findings provide the basis for understanding the molecular mechanisms associated with laminin-1-induced neurogenic expression in MSCs.
SCZ Keywordsschizophrenia