1J Psychiatr Res 2008 Jan 42: 125-33
PMID17140601
TitleAssociation of the gene encoding neurogranin with schizophrenia in males.
AbstractThe neurogranin (NRGN) gene produces a postsynaptic brain-specific protein that regulates calmodulin-Ca(2+) availability in neurons. Acting downstream of the NMDA receptor and upstream of calcineurin and other proteins implicated in schizophrenia, NRGN is a good candidate for association studies in schizophrenia. NRGN expression is regulated during development and is modulated by thyroid hormones and retinoids, molecules essential for the proper development of the central nervous system. Given the genetic complexity of schizophrenia and the potential genetic heterogeneity in different populations, we studied a possible association of NRGN with schizophrenia in 73 Azorean proband-parent triads and in two independent case-control samples from the Portuguese-mainland (244 schizophrenic and 210 controls) and Brazil (69 schizophrenic and 85 mentally healthy individuals). Genotype distribution showed association of the rs7113041 SNP with schizophrenia in males of Portuguese origin, which was confirmed by the analysis of the proband-parent triads. This evidence, implicating NRGN in schizophrenia, introduces another player into the glutamatergic hypothesis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2J Psychiatr Res 2008 Jan 42: 125-33
PMID17140601
TitleAssociation of the gene encoding neurogranin with schizophrenia in males.
AbstractThe neurogranin (NRGN) gene produces a postsynaptic brain-specific protein that regulates calmodulin-Ca(2+) availability in neurons. Acting downstream of the NMDA receptor and upstream of calcineurin and other proteins implicated in schizophrenia, NRGN is a good candidate for association studies in schizophrenia. NRGN expression is regulated during development and is modulated by thyroid hormones and retinoids, molecules essential for the proper development of the central nervous system. Given the genetic complexity of schizophrenia and the potential genetic heterogeneity in different populations, we studied a possible association of NRGN with schizophrenia in 73 Azorean proband-parent triads and in two independent case-control samples from the Portuguese-mainland (244 schizophrenic and 210 controls) and Brazil (69 schizophrenic and 85 mentally healthy individuals). Genotype distribution showed association of the rs7113041 SNP with schizophrenia in males of Portuguese origin, which was confirmed by the analysis of the proband-parent triads. This evidence, implicating NRGN in schizophrenia, introduces another player into the glutamatergic hypothesis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Nature 2009 Aug 460: 744-7
PMID19571808
TitleCommon variants conferring risk of schizophrenia.
Abstractschizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the 'genomic disorders', have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
SCZ Keywordsschizophrenia, schizophrenic
4Curr. Opin. Neurobiol. 2010 Dec 20: 810-5
PMID20934321
TitleThe neurobiology of schizophrenia: new leads and avenues for treatment.
AbstractRecent large-scale genetic studies have provided robust evidence implicating several novel susceptibility genes for schizophrenia. These include ZNF804A, TCF4 and NRGN, which contain common variants that weakly increase schizophrenia susceptibility, and NRXN1, in which rare copy number variants have a greater impact on schizophrenia risk. Investigation of these and other substantiated susceptibility genes are providing valuable insight into the primary neurobiological mechanisms underlying schizophrenia, which may lead to novel therapeutic interventions for the disorder. In the meantime, several novel pharmacological strategies, including activation of mGluRs, elevation of synaptic glycine and inhibition of phosphodiesterase 10A, have recently shown promise for the treatment of schizophrenia in clinical trials.
SCZ Keywordsschizophrenia, schizophrenic
5Prog. Neuropsychopharmacol. Biol. Psychiatry 2010 Dec 34: 1375-80
PMID20600464
TitleGenetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis.
AbstractThere is a relatively high genetic heritability of schizophrenia as shown by family, twin and adoption studies. A large number of hypotheses on the causes of schizophrenia occurred over time. In this review we focus on genetic findings related to potential alterations of intracellular Ca-homeostasis in association with schizophrenia. First, we provide evidence for the NMDA/glutamatergic theory of schizophrenia including calcium processes. We mainly focus on genes including: DAO (D-amino acid oxidase), DAOA (D-amino acid oxidase activator), DTNBP1 (Dysbindin 1, dystrobrevin-binding protein 1), NRG1 (Neuregulin 1), ERBB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4, avian), NOS1 (nitric oxide synthase 1, neuronal) and NRGN (Neurogranin). Furthermore, a gene coding for a calcium channel subunit (CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit) is discussed in the light of schizophrenia whereas genetic findings related to alterations in the intracellular Ca-homeostasis associated specifically with dopaminergic and serotonergic neurotransmission in schizophrenia are not herein closer reviewed. Taken together there is converging evidence for the contribution of genes potentially related to alterations in intracellular Ca-homeostasis to the risk of schizophrenia. Replications and functional studies will hopefully provide further insight into these genetic variants and the underlying processes.
SCZ Keywordsschizophrenia, schizophrenic
6Biol. Psychiatry 2010 Oct 68: 671-3
PMID20673877
TitleCommon variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese.
Abstractschizophrenia is a complex major psychiatric disorder affecting ?1% of the world population. Recently, in a genome-wide association study and a follow-up in Caucasians, Stefansson et al. examined 7662 schizophrenic cases and 29053 normal control subjects and reported seven common single nucleotide polymorphisms (SNPs) that were significantly (>10(-8)) associated with schizophrenia.
To investigate whether these risk SNPs were significantly associated in Han Chinese, we analyzed the seven SNPs in 2496 schizophrenia patients and 5184 normal control subjects. Because only three of the seven SNPs were polymorphic in Han Chinese, we genotyped two additional common SNPs from the same risk regions.
Three SNPs, rs6932590 (p = .00096), rs3131296 (p = 1.29 × 10(-6)), and rs3130375 (p = 1.76 × 10(-5)), mapping to the major histocompatibility complex region and one SNP rs2958182 (p = 3.64 × 10(-6)) located in the TCF4 gene were significant in our sample set. A meta-analysis using published genome-wide association study results also supported our findings.
Our results confirm that common risk factors in the major histocompatibility complex region and TCF4 gene are associated with schizophrenia in Han Chinese, but our results fail to show an association with SNP rs12807809 in the NRGN gene.
SCZ Keywordsschizophrenia, schizophrenic
7Biol. Psychiatry 2010 Oct 68: 671-3
PMID20673877
TitleCommon variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese.
Abstractschizophrenia is a complex major psychiatric disorder affecting ?1% of the world population. Recently, in a genome-wide association study and a follow-up in Caucasians, Stefansson et al. examined 7662 schizophrenic cases and 29053 normal control subjects and reported seven common single nucleotide polymorphisms (SNPs) that were significantly (>10(-8)) associated with schizophrenia.
To investigate whether these risk SNPs were significantly associated in Han Chinese, we analyzed the seven SNPs in 2496 schizophrenia patients and 5184 normal control subjects. Because only three of the seven SNPs were polymorphic in Han Chinese, we genotyped two additional common SNPs from the same risk regions.
Three SNPs, rs6932590 (p = .00096), rs3131296 (p = 1.29 × 10(-6)), and rs3130375 (p = 1.76 × 10(-5)), mapping to the major histocompatibility complex region and one SNP rs2958182 (p = 3.64 × 10(-6)) located in the TCF4 gene were significant in our sample set. A meta-analysis using published genome-wide association study results also supported our findings.
Our results confirm that common risk factors in the major histocompatibility complex region and TCF4 gene are associated with schizophrenia in Han Chinese, but our results fail to show an association with SNP rs12807809 in the NRGN gene.
SCZ Keywordsschizophrenia, schizophrenic
8Hum. Mol. Genet. 2010 Jul 19: 2841-57
PMID20457675
TitleSMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution.
AbstractThe SMARCA2 gene, which encodes BRM in the SWI/SNF chromatin-remodeling complex, was recently identified as being associated with schizophrenia (SZ) in a genome-wide approach. Polymorphisms in SMARCA2, associated with the disease, produce changes in the expression of the gene and/or in the encoded amino acid sequence. We show here that an SWI/SNF-centered network including the Smarca2 gene is modified by the down-regulation of REST/NRSF in a mouse neuronal cell line. REST/NRSF down-regulation also modifies the levels of Smarce1, Smarcd3 and SWI/SNF interactors (Hdac1, RcoR1 and Mecp2). Smarca2 down-regulation generates an abnormal dendritic spine morphology that is an intermediate phenotype of SZ. We further found that 8 (CSF2RA, HIST1H2BJ, NOTCH4, NRGN, SHOX, SMARCA2, TCF4 and ZNF804A) out of 10 genome-wide supported SZ-associated genes are part of an interacting network (including SMARCA2), 5 members of which encode transcription regulators. The expression of 3 (TCF4, SMARCA2 and CSF2RA) of the 10 genome-wide supported SZ-associated genes is modified when the REST/NRSF-SWI/SNF chromatin-remodeling complex is experimentally manipulated in mouse cell lines and in transgenic mouse models. The REST/NRSF-SWI/SNF deregulation also results in the differential expression of genes that are clustered in chromosomes suggesting the induction of genome-wide epigenetic changes. Finally, we found that SMARCA2 interactors and the genome-wide supported SZ-associated genes are considerably enriched in genes displaying positive selection in primates and in the human lineage which suggests the occurrence of novel protein interactions in primates. Altogether, these data identify the SWI/SNF chromatin-remodeling complex as a key component of the genetic architecture of SZ.
SCZ Keywordsschizophrenia, schizophrenic
9Front Behav Neurosci 2010 -1 4: 23
PMID20485477
TitleNew Genetic Findings in Schizophrenia: Is there Still Room for the Dopamine Hypothesis of Schizophrenia?
Abstractschizophrenia is a highly heritable disorder, but the identification of specific genes has proven to be a difficult endeavor. Genes involved in the dopaminergic system are considered to be major candidates since the "dopamine hypothesis" of impairment in dopaminergic neurotransmission is one of the most widely accepted hypotheses of the etiology of schizophrenia. The overall findings from candidate studies do provide some support for the "dopamine hypothesis." However, results from the first systematic genome-wide association (GWA) studies have implicated variants within ZNF804A, NRGN, TCF4, and variants in the MHC region on chromosome 6p22.1. Although these genes may not immediately impact on dopaminergic neurotransmission, it remains possible that downstream impairments in dopaminergic function are caused. Furthermore, only a very small fraction of all truly associated genetic variants have been detected and many more associated variants will be identified in the future by GWA studies and alternative approaches. The results of these studies may allow a more comprehensive re-evaluation of the dopamine hypothesis.
SCZ Keywordsschizophrenia, schizophrenic
10Schizophr. Res. 2011 Feb 125: 304-6
PMID21112188
TitleA neuropsychological investigation of the genome wide associated schizophrenia risk variant NRGN rs12807809.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenic
11Hum. Mol. Genet. 2011 Oct 20: 4076-81
PMID21791550
TitleCommon variants at VRK2 and TCF4 conferring risk of schizophrenia.
AbstractCommon sequence variants have recently joined rare structural polymorphisms as genetic factors with strong evidence for association with schizophrenia. Here we extend our previous genome-wide association study and meta-analysis (totalling 7 946 cases and 19 036 controls) by examining an expanded set of variants using an enlarged follow-up sample (up to 10 260 cases and 23 500 controls). In addition to previously reported alleles in the major histocompatibility complex region, near neurogranin (NRGN) and in an intron of transcription factor 4 (TCF4), we find two novel variants showing genome-wide significant association: rs2312147[C], upstream of vaccinia-related kinase 2 (VRK2) [odds ratio (OR) = 1.09, P = 1.9 × 10(-9)] and rs4309482[A], between coiled-coiled domain containing 68 (CCDC68) and TCF4, about 400 kb from the previously described risk allele, but not accounted for by its association (OR = 1.09, P = 7.8 × 10(-9)).
SCZ Keywordsschizophrenia, schizophrenic
12Hum. Mol. Genet. 2011 Jan 20: 387-91
PMID21037240
TitleMost genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries.
AbstractRecent findings from genetic epidemiology and from genome-wide association studies point strongly to a partial overlap in the genes that contribute susceptibility to schizophrenia and bipolar disorder (BD). Previous data have also directly implicated one of the best supported schizophrenia-associated loci, zinc finger binding protein 804A (ZNF804A), as showing trans-disorder effects, and the same is true for one of the best supported bipolar loci, calcium channel, voltage-dependent, L type, alpha 1C subunit (CACNA1C) which has also been associated with schizophrenia. We have undertaken a cross-phenotype study based upon the remaining variants that show genome-wide evidence for association in large schizophrenia and BD meta-analyses. These comprise in schizophrenia, SNPs in or in the vicinity of transcription factor 4 (TCF4), neurogranin (NRGN) and an extended region covering the MHC locus on chromosome 6. For BD, the strongly supported variants are in the vicinity of ankyrin 3, node of Ranvier (ANK3) and polybromo-1 (PBRM1). Using data sets entirely independent of their original discoveries, we observed strong evidence that the PBRM1 locus is also associated with schizophrenia (P = 0.00015) and nominally significant evidence (P < 0.05) that the NRGN and the extended MHC region are associated with BD. Moreover, considering this highly restricted set of loci as a group, the evidence for trans-disorder effects is compelling (P = 4.7 × 10(-5)). Including earlier reported data for trans-disorder effects for ZNF804A and CACNA1C, six out of eight of the most robustly associated loci for either disorder show trans-disorder effects.
SCZ Keywordsschizophrenia, schizophrenic
13Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011 Jul 156B: 532-5
PMID21538840
TitleAnalysis of neurogranin (NRGN) in schizophrenia.
AbstractA recent study reported a genome-wide significant association between schizophrenia and rs12807809-a SNP located approximately 3 kbp upstream of the neurogranin gene (NRGN). We sought to determine if (a) NRGN contains common exonic variants or variants affecting expression (eQTLs) that could account for the association with rs12807809 and (b) there exist rare non-synonymous highly penetrant variants that could potentially confer high risk of schizophrenia. We sequenced all four exons of NRGN in a screening set of 14 individuals but found no novel common polymorphisms. We additionally sequenced the coding exons in up to 1,113 individuals (699 cases) but this revealed only a singleton-coding variant in exon 2 (G246T leading to Gly-55 ? Val amino acid change) in which prediction of function analysis suggested is likely to be benign. Finally, analysis of a brain expression dataset of at least 130 individuals did not identify any eQTLs that were correlated with associated SNP rs12807809 following correction for multiple testing.
SCZ Keywordsschizophrenia, schizophrenic
14Neurosci Biobehav Rev 2012 Jan 36: 556-71
PMID21946175
TitleGenome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt?
Abstractschizophrenia (SZ) and bipolar disorder (BPD) have high heritabilities and are clinically and genetically complex. Genome wide association studies (GWAS) and studies of copy number variations (CNV) in SZ and BPD have allowed probing of their underlying genetic risks. In this systematic review, we assess extant genetic signals from published GWAS and CNV studies of SZ and BPD up till March 2011. Risk genes associated with SZ at genome wide significance level (p value<7.2 × 10(-8)) include zinc finger binding protein 804A (ZNF804A), major histocompatibility (MHC) region on chromosome 6, neurogranin (NRGN) and transcription factor 4 (TCF4). Risk genes associated with BPD include ankyrin 3, node of Ranvier (ANK3), calcium channel, voltage dependent, L type, alpha 1C subunit (CACNA1C), diacylglycerol kinase eta (DGKH), gene locus on chromosome 16p12, and polybromo-1 (PBRM1) and very recently neurocan gene (NCAN). Possible common genes underlying psychosis include ZNF804A, CACNA1C, NRGN and PBRM1. The CNV studies suggest that whilst CNVs are found in both SZ and BPD, the large deletions and duplications are more likely found in SZ rather than BPD. The validation of any genetic signal is likely confounded by genetic and phenotypic heterogeneities which are influenced by epistatic, epigenetic and gene-environment interactions. There is a pressing need to better integrate the multiple research platforms including systems biology computational models, genomics, cross disorder phenotyping studies, transcriptomics, proteomics, metabolomics, neuroimaging and clinical correlations in order to get us closer to a more enlightened understanding of the genetic and biological basis underlying these potentially crippling conditions.
SCZ Keywordsschizophrenia, schizophrenic
15Twin Res Hum Genet 2012 Jun 15: 296-303
PMID22856365
TitleThe effect of the neurogranin schizophrenia risk variant rs12807809 on brain structure and function.
AbstractA single nucleotide polymorphism rs12807809 located upstream of the neurogranin (NRGN) gene has been identified as a risk variant for schizophrenia in recent genome-wide association studies. To date, there has been little investigation of the endophenotypic consequences of this variant, and our own investigations have suggested that the effects of this gene are not apparent at the level of cognitive function in patients or controls. Because the impact of risk variants may be more apparent at the level of brain, the aim of this investigation was to delineate whether NRGN genotype predicted variability in brain structure and/or function. Healthy individuals participated in structural (N = 140) and/or functional (N = 36) magnetic resonance imaging (s/fMRI). Voxel-based morphometry was used to compare gray and white matter volumes between carriers of the non-risk C allele (i.e., CC/CT) and those who were homozygous for the risk T allele. Functional imaging data were acquired during the performance of a spatial working memory task, and were also analyzed with respect to the difference between C carriers and T homozygotes. There was no effect of the NRGN variant rs12807809 on behavioral performance or brain structure. However, there was a main effect of genotype on brain activity during performance of the working memory task, such that while C carriers exhibited a load-independent decrease in left superior frontal gyrus/BA10, TT individuals failed to show a similar decrease in activity. The failure to disengage this ventromedial prefrontal region, despite preserved performance, may be indicative of a reduction in processing efficiency in healthy TT carriers. Although it remains to be established whether this holds true in larger samples and in patient cohorts, if valid, this suggests a potential mechanism by which NRGN variability might contribute to schizophrenia risk.
SCZ Keywordsschizophrenia, schizophrenic
16Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012 Jun 159B: 405-13
PMID22461181
TitleFunctional genetic variation at the NRGN gene and schizophrenia: evidence from a gene-based case-control study and gene expression analysis.
AbstractGenome-wide association and follow-up studies have reported an association between schizophrenia and rs12807809 of the NRGN gene on chromosome 11q24.2. We investigated the association of five linkage disequilibrium-tagging SNPs and haplotypes that cover the NRGN gene with schizophrenia in a Japanese sample of 2,019 schizophrenia patients and 2,574 controls to determine whether rs12807809 is the most strongly associated variant for schizophrenia in the vicinity of the NRGN gene. We found that the rs12807809-rs12278912 haplotype of the NRGN gene was associated with schizophrenia (global P = 0.0042). The frequencies of the TG and TA haplotypes of rs12807809-rs12278912 in patients were higher (OR = 1.14, P = 0.0019) and lower (OR = 0.85, P = 0.0053), respectively, than in the controls. We did not detect any evidence of association of schizophrenia with any SNPs; however, two nominal associations of rs12278912 (OR = 1.10, P = 0.057) and rs2075713 (OR = 1.10, P = 0.057) were observed. Furthermore, we detected an association between the rs12807809-rs12278912 haplotype and NRGN expression in immortalized lymphoblasts derived from 45 HapMap JPT subjects (z = 2.69, P = 0.007) and confirmed the association in immortalized lymphoblasts derived from 42 patients with schizophrenia and 44 healthy controls (z = 3.09, P = 0.002). The expression of the high-risk TG haplotype was significantly lower than the protective TA haplotype. The expression was lower in patients with schizophrenia than in controls; however, this difference was not statistically significant. This study provides further evidence of the association of the NRGN gene with schizophrenia, and our results suggest that there is a link between the TG haplotype of rs12807809-rs12278912, decreased expression of NRGN and risk of developing schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
17Schizophr. Res. 2012 May 137: 7-13
PMID22306195
TitleGenetic and functional analysis of the gene encoding neurogranin in schizophrenia.
Abstractschizophrenia is a highly heritable disorder, but many aspects of its etiology and pathophysiology remain poorly understood. Recently, a SNP rs12807809 located upstream of the neurogranin (NRGN) gene achieved genome-wide significance in this disorder.
In order to find the causal variants of NRGN gene in schizophrenia, we searched for genetic variants in the promoter region and all the exons (including both UTR ends and rs12807809) using direct sequencing in a sample of patients with schizophrenia (n=346) and non-psychotic controls (n=345), both being Han Chinese from Taiwan, and conducted an association and functional study.
We identified 7 common polymorphisms in the NRGN gene. SNP and haplotype-based analyses displayed no associations with schizophrenia. Additionally, we identified 5 rare variants in 6 out of 346 patients, including 3 rare variants located at the promoter region (g.-620A>G, g.-578C>G, and g.-344G>A) and 2 rare variants located at 5' UTR (c.-74C>G, and c.-41G>A). No rare variants were found in the control subjects. The results of the reporter gene assay demonstrated that the regulatory activity of construct containing g.-620G, g.-578G, g.-344A, c.-74G, and c.-41A was significantly lower as compared to the wild type construct (P<0.01 for g.-578G; P<0.001 for the other constructs). In silico analysis also demonstrated their influences on the regulatory function of NRGN gene.
Our study lends support to the hypothesis of multiple rare mutations in schizophrenia, and provides genetic clues that indicate the involvement of NRGN in this disorder.
SCZ Keywordsschizophrenia, schizophrenic
18PLoS ONE 2012 -1 7: e29780
PMID22253779
TitleImpact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.
AbstractThe rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.
Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.
Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.
Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
19Nihon Shinkei Seishin Yakurigaku Zasshi 2013 Apr 33: 67-9
PMID25314742
TitleImpact of the genome wide supported NRGN gene on anterior cingulate morphologyin schizophrenia.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenic
20Schizophr Bull 2013 May 39: 518-26
PMID22499782
TitleBrain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia.
AbstractGenetic variants associated with increased risk for schizophrenia (SZ) are hypothesized to be more penetrant at the level of brain structure and function than at the level of behavior. However, to date the relative sensitivity of imaging vs cognitive measures of these variants has not been quantified. We considered effect sizes associated with cognitive and imaging studies of 9 robust SZ risk genes (DAOA, DISC1, DTNBP1, NRG1, RGS4, NRGN, CACNA1C, TCF4, and ZNF804A) published between January 2005-November 2011. Summary data was used to calculate estimates of effect size for each significant finding. The mean effect size for each study was categorized as small, medium, or large and the relative frequency of each category was compared between modalities and across genes. Random effects meta-analysis was used to consider the impact of experimental methodology on effect size. Imaging studies reported mostly medium or large effects, whereas cognitive investigations commonly reported small effects. Meta-analysis confirmed that imaging studies were associated with larger effects. Effect size estimates were negatively correlated with sample size but did not differ as a function of gene nor imaging modality. These observations support the notion that SZ risk variants show larger effects, and hence greater penetrance, when characterized using indices of brain structure and function than when indexed by cognitive measures. However, it remains to be established whether this holds true for individual risk variants, imaging modalities, or cognitive functions, and how such effects may be mediated by a relationship with sample size and other aspects of experimental variability.
SCZ Keywordsschizophrenia, schizophrenic
21In Silico Pharmacol 2013 -1 1: 15
PMID25505659
TitleComparison of gene expression profiles in the blood, hippocampus and prefrontal cortex of rats.
AbstractThe comparability of gene expression between blood and brain tissues is a central issue in neuropsychiatric research where the analysis of molecular mechanisms in the brain is of high importance for the understanding of the diseases and the discovery of biomarkers. However, the accessibility of brain tissue is limited. Therefore, knowledge about how easily accessible peripheral tissue, e. g. blood, is comparable to and reflects gene expression of brain regions will help to advance neuropsychiatric research.
Gene expression in the blood, hippocampus (HC) and prefrontal cortex (PFC) of genetically identical rats was compared using a genome-wide Affymetrix gene expression microarray covering 29,215 expressed genes. A total of 56.8% of 15,717 expressed genes were co-expressed in blood and at least one brain tissue, while 55.3% of all genes were co-expressed in all three tissues simultaneously. The overlapping genes included a set of genes of relevance to neuropsychiatric diseases, in particular bipolar disorder, schizophrenia and alcohol addiction. These genes included CLOCK, COMT, FAAH, NPY, NR3C1, NRGN, PBRM1, TCF4, and SYNE.
This study provides baseline data on absolute gene expression and differences between gene expression in the blood, HC and PFC brain tissue of genetically identical rats. The present data represents a valuable resource for future studies as it might be used for first information on gene expression levels of genes of interest in blood and brain under baseline conditions. Limitations of our study comprise possible contamination of brain tissue with blood and the non-detection of genes with very low expression levels. Genes that are more highly expressed in the brain than in the blood are of particular interest since changes in their expression, e.g. due to disease status, or treatment, are likely to be detected in an experiment. In contrast, genes with higher expression in the blood than in the brain are less informative since their higher baseline levels could superimpose variation in brain.
SCZ Keywordsschizophrenia, schizophrenic
22PLoS ONE 2013 -1 8: e85603
PMID24386483
TitleEffects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia.
AbstractAlthough the genome wide supported psychosis susceptibility neurogranin (NRGN) gene is expressed in human brains, it is unclear how it impacts brain morphology in schizophrenia. We investigated the influence of NRGN rs12807809 on cortical thickness, subcortical volumes and shapes in patients with schizophrenia. One hundred and fifty six subjects (91 patients with schizophrenia and 65 healthy controls) underwent structural MRI scans and their blood samples were genotyped. A brain mapping algorithm, large deformation diffeomorphic metric mapping, was used to perform group analysis of subcortical shapes and cortical thickness. Patients with risk TT genotype were associated with widespread cortical thinning involving frontal, parietal and temporal cortices compared with controls with TT genotype. No volumetric difference in subcortical structures (hippocampus, thalamus, amygdala, basal ganglia) was observed between risk TT genotype in patients and controls. However, patients with risk TT genotype were associated with thalamic shape abnormalities involving regions related to pulvinar and medial dorsal nuclei. Our results revealed the influence of the NRGN gene on thalamocortical morphology in schizophrenia involving widespread cortical thinning and thalamic shape abnormalities. These findings help to clarify underlying NRGN mediated pathophysiological mechanisms involving cortical-subcortical brain networks in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
23PLoS ONE 2013 -1 8: e76815
PMID24098564
TitleThe impact of genome-wide supported schizophrenia risk variants in the neurogranin gene on brain structure and function.
AbstractThe neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS), such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.
SCZ Keywordsschizophrenia, schizophrenic
24J. Hum. Genet. 2013 Oct 58: 700-5
PMID23903071
TitleInfluence of the NRGN gene on intellectual ability in schizophrenia.
AbstractGenome-wide association studies have reported an association between schizophrenia and rs12807809 of the neurogranin (NRGN) gene. We have recently found that an rs12807809-rs12278912 haplotype of the gene is associated with schizophrenia in a Japanese population and that the NRGN expression of the high-risk TG haplotype is lower than that of the protective TA haplotype in immortalized lymphoblasts. In this study, we investigated the influences of neurogranin genotypes (rs12807809 and rs12278912), haplotypes and diplotypes and genetic variant-diagnosis interactions on intellectual ability in 414 Japanese patients with schizophrenia and healthy subjects. We detected possible effects of the genome-wide screen-supported rs12807809, haplotypes, diplotypes and their genetic variant-diagnosis interactions on intellectual abilities at the threshold level of P<0.05. After applying Bonferroni correction for 13 genotype measures and setting P-values for significance (P<0.0039; 0.05/13), three effects remained significant: the rs12807809-rs12278912 diplotype-diagnosis interactions on performance intelligence quotient (CG/CG: P=3.9 × 10(-13); TA/TA: P=1.1 × 10(-7)) and TA/TA diplotype on performance intelligence quotient in patients with schizophrenia (P=8.2 × 10(-8)) remained significant. The intellectual abilities of the high-risk TG/TG diplotype of the neurogranin gene were lower compared to those with the non-risk TA/TA diplotype. Our findings suggest that the genetic risk variant in the neurogranin gene may be related to reduced intellectual ability.
SCZ Keywordsschizophrenia, schizophrenic
25Schizophr Bull 2013 Jan 39: 141-50
PMID21799211
TitleThe effect of neurogranin on neural correlates of episodic memory encoding and retrieval.
AbstractNeurogranin (NRGN) is the main postsynaptic protein regulating the availability of calmodulin-Ca(2+) in neurons. NRGN is expressed exclusively in the brain, particularly in dendritic spines and has been implicated in spatial learning and hippocampal plasticity. Genetic variation in rs12807809 in the NRGN gene has recently been confirmed to be associated with schizophrenia in a meta-analysis of genome-wide association studies: the T-allele was found to be genome-wide significantly associated with schizophrenia. Cognitive tests and personality questionnaires were administered in a large sample of healthy subjects. Brain activation was measured with functional magnetic resonance imaging (fMRI) during an episodic memory encoding and retrieval task in a subsample. All subjects were genotyped for NRGN rs12807809. There was no effect of genotype on personality or cognitive measures in the large sample. Homozygote carriers of the T-allele showed better performance in the retrieval task during fMRI. After controlling for memory performance, differential brain activation was evident in the anterior cingulate cortex for the encoding and posterior cingulate regions during retrieval. We could demonstrate that rs12807809 of NRGN is associated with differential neural functioning in the anterior and posterior cingulate. These areas are involved in episodic memory processes and have been implicated in the pathophysiology of schizophrenia in structural and functional imaging as well as postmortem studies.
SCZ Keywordsschizophrenia, schizophrenic
26Neurosci. Lett. 2014 May 568: 12-6
PMID24686180
TitleExpression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia.
AbstractMany gene expression studies have examined postmortem brain tissues of patients with schizophrenia. However, only a few expression studies of the genes identified in genome-wide association study (GWAS) have been published to date. We measured the expression levels of the genes identified in GWAS (ZNF804A, OPCML, RPGRIP1L, NRGN, and TCF4) of the postmortem brain tissues of patients with schizophrenia and controls from two separate sample sets (i.e., the Australian Tissue Resource Center and Stanley Medical Research Institute). We also determined whether the single-nucleotide polymorphisms (SNPs) identified in the GWAS were related to the gene expression changes in the prefrontal cortex. No difference was observed between the patients with schizophrenia and controls from the Australian Tissue Resource Center samples in the mRNA levels of ZNF804A, OPCML, RPGRIP1L, NRGN, or TCF4. The lack of mRNA change for these five transcripts was also found in the brain samples from the Stanley Medical Research Institute. In addition, no relationship between the schizophrenia-associated SNPs identified in the GWAS and the corresponding gene expression was observed in either sample set. Our results suggest that major changes in the transcript levels of the five candidate genes identified in the GWAS may not occur in adult patients with schizophrenia. The lack of linkage between the risk gene polymorphisms and the expression levels of their major transcripts suggests that the control of pan mRNA levels may not be a prominent mechanism by which the genes identified in the GWAS contribute to the pathophysiology of schizophrenia. Further studies are needed to examine how the genes identified in the GWAS contribute to the pathophysiology of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
27Psychol Med 2015 -1 45: 2461-80
PMID25858580
TitleWhat is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review.
AbstractThe powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
SCZ Keywordsschizophrenia, schizophrenic
28Acta Neuropsychiatr 2015 Aug 27: 221-7
PMID25739323
TitleInfluence of NRGN rs12807809 polymorphism on symptom severity in individuals with schizophrenia in the Han population but not the Zhuang population of south China.
AbstractNRGN is one of the most promising candidate genes for schizophrenia based on function and position. Therefore, this study aimed to examine the genetic association of this polymorphism with schizophrenia in the Zhuang and Han populations of south China. Subjects and methods A total of 282 patients (188 Han and 94 Zhuang) and 282 healthy subjects (188 Han and 94 Zhuang) were recruited. Of these, 246 schizophrenia patients underwent an assessment of psychotic symptoms using the Positive and Negative Syndrome Scale (PANSS). A TaqMan genotyping assay method was used to determine the genotypes.
We did not find a significant association of rs12807809 polymorphism with schizophrenia in the total pooled samples, or in the separate ethnic groups. However, in Han schizophrenia patients, quantitative data analyses showed that the CC genotype of the rs12807809 polymorphism was associated with PANSS aggression subscale score and activation subscale score. Furthermore, carriers of the C allele of rs12807809 polymorphism among Han schizophrenia patients had higher scores of general, activation, depression, aggression, and global symptoms than the T allele carriers.
In conclusion rs12807809 polymorphism may not contribute to the risk of schizophrenia but influence the clinical symptoms of schizophrenia in the Han population.
SCZ Keywordsschizophrenia, schizophrenic
29J Affect Disord 2016 Apr 194: 180-7
PMID26828755
TitlePolymorphisms in NRGN are associated with schizophrenia, major depressive disorder and bipolar disorder in the Han Chinese population.
AbstractThe NRGN gene locates on 11q24 and encodes a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. In a previous genome-wide association study of schizophrenia in the Caucasian population, rs12807809 of NRGN was found to be significantly associated with schizophrenia, moreover, it was further found to be associated with bipolar disorder.
We recruited 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases, and 1248 healthy controls from Han Chinese population. Rs12807809 and another two tag SNPs of NRGN were genotyped and analyzed in three diseases respectively. A meta-analysis of rs12807809 was also conducted to verify its association with schizophrenia in Han Chinese population.
Rs7113041 was associated with bipolar disorder (odds ratio, 95% confidence interval (OR, 95% CI)=1.194, 1.032-1.383; Pgenotype=0.0126), and rs12278912 was associated with major depressive disorder (OR, 95% CI=0.789, 0.673-0.924; Pallele=0.0102, Pgenotype=0.0399) after Bonferroni correction. The "GA" haplotype of rs7113041-rs12278912 was significantly associated with schizophrenia, major depressive disorder and bipolar disorder (corresponding P values were 2.85E-04, 3.00E-03, and 5.40E-04 after Bonferroni correction).
Despite the association between NRGN and psychoses we have found, we failed to validate the positive variant rs12807809, which was reported in the Caucasian genome-wide association study both in our single site association test and the meta-analysis. Functional studies are needed to illuminate the role of NRGN in the pathogenesis of these mental disorders.
Our findings prove that NRGN is a shared susceptibility gene of schizophrenia, major depression and bipolar disorder in Han Chinese, and this might provide a new target for the diagnosis and treatment of these mental disorders.
SCZ Keywordsschizophrenia, schizophrenic