1PLoS ONE 2013 -1 8: e73169
PMID24058414
TitleKnockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation.
AbstractHaploinsufficiency of TCF4 causes Pitt-Hopkins syndrome (PTHS): a severe form of mental retardation with phenotypic similarities to Angelman, Mowat-Wilson and Rett syndromes. Genome-wide association studies have also found that common variants in TCF4 are associated with an increased risk of schizophrenia. Although TCF4 is transcription factor, little is known about TCF4-regulated processes in the brain. In this study we used genome-wide expression profiling to determine the effects of acute TCF4 knockdown on gene expression in SH-SY5Y neuroblastoma cells. We identified 1204 gene expression changes (494 upregulated, 710 downregulated) in TCF4 knockdown cells. Pathway and enrichment analysis on the differentially expressed genes in TCF4-knockdown cells identified an over-representation of genes involved in TGF-? signaling, epithelial to mesenchymal transition (EMT) and apoptosis. Among the most significantly differentially expressed genes were the EMT regulators, SNAI2 and DEC1 and the proneural genes, NEUROG2 and ASCL1. Altered expression of several mental retardation genes such as UBE3A (Angelman Syndrome), ZEB2 (Mowat-Wilson Syndrome) and MEF2C was also found in TCF4-depleted cells. These data suggest that TCF4 regulates a number of convergent signaling pathways involved in cell differentiation and survival in addition to a subset of clinically important mental retardation genes.
SCZ Keywordsschizophrenia
2PLoS ONE 2014 -1 9: e110310
PMID25340473
TitleMice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders.
AbstractIncreasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2.
SCZ Keywordsschizophrenia