1J Psychiatry Neurosci 2009 May 34: 195-8
PMID19448849
TitlePositive association of the pericentrin (PCNT) gene with major depressive disorder in the Japanese population.
AbstractPericentrin (PCNT) interacts with disruption-in-schizophrenia 1 (DISC1), a known genetic risk factor for schizophrenia, bipolar disorder and major depressive disorder (MDD). We sought to determine whether the PCNT gene is implicated in MDD.
We performed case-control association analyses in the Japanese population. We analyzed 9 single nucleotide polymorphisms (SNPs) in 173 patients with MDD and 348 healthy controls.
We found a significant allelic association between 3 SNPs (rs3788265, rs2073376 and rs2073380) of the PCNT gene and MDD (p = 0.006, 0.005 and 0.021, respectively). After correction for multiple testing, 2 SNPs (rs3788265 and rs2073376) retained significant allelic associations with MDD. In addition, we found a significant association between the 2 marker haplotypes (r3788265 and rs2073376) and MDD (permutation p = 0.011).
Our sample was small and comprised only Japanese participants. In addition, owing to the late onset of MDD, it is possible that the disorder will develop in at least some participants in our control group. Finally, we did not show how SNPs of the PCNT gene alter its function.
Our results suggest that genetic variations in the PCNT gene may play a significant role in the etiology of MDD in the Japanese population.
SCZ Keywordsschizophrenia
2Neuromolecular Med. 2010 Sep 12: 243-7
PMID19937158
TitleAssociation study between the pericentrin (PCNT) gene and schizophrenia.
AbstractDisrupted-in-schizophrenia 1 (DISC1), a known genetic risk factor for schizophrenia (SZ) and major depressive disorder (MDD), interacts with several proteins and some of them are reported to be genetically associated with SZ. Pericentrin (PCNT) also interacts with DISC1 and recently single-nucleotide polymorphisms (SNPs) within the PCNT gene have been found to show significant associations with SZ and MDD. In this study, case-controlled association analysis was performed to determine if the PCNT gene is implicated in SZ. Nine SNPs were analyzed in 1,477 individuals (726 patients with SZ and 751 healthy controls). No significant difference was observed between the controls and the patients in allelic frequencies or genotypic distributions of eight SNPs. Although allelic distribution of rs11702684 was different between the two groups (P = 0.042), the difference did not reach statistical significance after permutation correction for multiple comparisons. In the haplotypic analysis, we could not find any significant association in our subjects, either. This gene may not play a major role independently in the etiology of SZ in the Japanese population.
SCZ Keywordsschizophrenia
3Dev. Biol. 2010 Apr 340: 41-53
PMID20096683
TitleA mutation in the pericentrin gene causes abnormal interneuron migration to the olfactory bulb in mice.
AbstractPrecise control of neuronal migration is essential for proper function of the brain. Taking a forward genetic screen, we isolated a mutant mouse with defects in interneuron migration. By genetic mapping, we identified a frame shift mutation in the pericentrin (PCNT) gene. The PCNT gene encodes a large centrosomal coiled-coil protein that has been implicated in schizophrenia. Recently, frame shift and premature termination mutations in the pericentrin (PCNT) gene were identified in individuals with Seckel syndrome and microcephalic osteodysplastic primordial dwarfism (MOPD II), both of which are characterized by greatly reduced body and brain sizes. The mouse PCNT mutant shares features with the human syndromes in its overall growth retardation and reduced brain size. We found that dorsal lateral ganglionic eminence (dLGE)-derived olfactory bulb interneurons are severely affected and distributed abnormally in the rostral forebrain in the mutant. Furthermore, mutant interneurons exhibit abnormal migration behavior and RNA interference knockdown of PCNT impairs cell migration along the rostal migratory stream (RMS) into the olfactory bulb. These findings indicate that pericentrin is required for proper migration of olfactory bulb interneurons and provide a developmental basis for association of pericentrin function with interneuron defects in human schizophrenia.
SCZ Keywordsschizophrenia
4G3 (Bethesda) 2015 Nov 5: 2453-61
PMID26384369
TitleWhole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome.
AbstractChromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes.
SCZ Keywordsschizophrenia