1Science 2005 Nov 310: 1187-91
PMID16293762
TitleDISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling.
AbstractThe disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3',5'-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
2Biol. Psychiatry 2006 Jul 60: 123-31
PMID16843095
TitleThe genetics and biology of DISC1--an emerging role in psychosis and cognition.
AbstractIn the developing field of biological psychiatry, DISC1 stands out by virtue of there being credible evidence, both genetic and biological, for a role in determining susceptibility to schizophrenia and related disorders. We highlight the methodologic paradigm that led to identification of DISC1 and review the supporting genetic and biological evidence. The original finding of DISC1 as a gene disrupted by a balanced translocation on chromosome 1q42 that segregates with schizophrenia, bipolar disorder, and recurrent major depression has sparked a number of confirmatory linkage and association studies. These indicate that DISC1 is a generalizable genetic risk factor for psychiatric illness that also influences cognition in healthy subjects. DISC1 has also been shown to interact with a number of proteins with neurobiological pedigrees, including Ndel1 (NUDEL), a key regulator of neuronal migration with endo-oligopeptidase activity, and PDE4B, a phosphodiesterase that is critical for cyclic adenosine monophosphate signaling and that is directly linked to learning, memory, and mood. Both are potential "drug" targets. DISC1 has thus emerged as a key molecular player in the etiology of major mental illness and in normal brain processes.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
3Neurosci. Lett. 2007 May 417: 316-21
PMID17346882
TitleAssociation analysis of ATF4 and ATF5, genes for interacting-proteins of DISC1, in bipolar disorder.
AbstractDisrupted in schizophrenia 1 (DISC1) and its molecular cascade are implicated in the pathophysiology of schizophrenia and bipolar disorder. As interacting-proteins with DISC1, Nudel, ATF4, ATF5, LIS1, alpha-tubulin, PDE4B, eIF3, FEZ1, Kendrin, MAP1A and MIPT3 were identified. We previously showed the down-regulation of ATF5 in the lymphoblastoid cells derived from affected co-twin of monozygotic twins discordant for bipolar disorder. We also suggested the contribution of endoplasmic reticulum stress response pathway to the illness, and ATF4 is one of major components in the pathway. Truncated mutant DISC1 reportedly cannot interact with ATF4 and ATF5. These findings suggest the role of these genes in the pathophysiology of bipolar disorder. In this study, we tested genetic association of ATF4 and ATF5 genes with bipolar disorder by a case-control study in Japanese population (438 patients and 532 controls) and transmission disequilibrium test in 237 trio samples from NIMH Genetics Initiative Pedigrees. We also performed gene expression analysis in lymphoblastoid cells. We did not find any significant association in both genetic study and expression analysis. By the exploratory haplotype analysis, nominal association of ATF4 with bipolar II patients was observed, but it was not significant after correction of multiple testing. Contribution of common variations of ATF4 and ATF5 to the pathophysiology of bipolar disorder may be minimal if any.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
4Biochem. Soc. Trans. 2007 Nov 35: 1283-6
PMID17956330
TitleDissecting DISC1 function through protein-protein interactions.
AbstractDisrupted in schizophrenia 1 (DISC1) is emerging in the eyes of many as the most promising candidate of all the schizophrenia risk genes. This viewpoint is derived from the combination of genetic, clinical, imaging and rapidly advancing cell biology data around this gene. All of these areas have been reviewed extensively recently and this review will point you towards some of these excellent papers. My own personal view of the potential importance of DISC1 was echoed in a recent review which suggested that DISC1 may be a 'Rosetta Stone' for schizophrenia research [Ross, Margolis, Reading, Pletnikov and Coyle (2006) Neuron 52, 139-153]. Our own efforts to try to understand the function of DISC1 were through identification of its protein-binding partners. Through an extensive Y2H (yeast two-hybrid) and bioinformatics effort we generated the 'DISC1-Interactome', a comprehensive network of protein-protein interactions around DISC1. In two excellent industry-academia collaborations we focused on two main interacting partners: Ndel1 (nudE nuclear distribution gene E homologue-like 1), an enigmatic protein which may have diverse functions as both a cysteine protease and a key centrosomal structural protein; and PDE4B, a cAMP-specific phosphodiesterase. I will review the work around these two protein complexes in detail.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
5J. Physiol. (Lond.) 2007 Oct 584: 401-5
PMID17823207
TitleDisrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness.
AbstractDisrupted in schizophrenia 1 (DISC1) is one of the most convincing genetic risk factors for major mental illness identified to date. DISC1 interacts directly with phosphodiesterase 4B (PDE4B), an independently identified risk factor for schizophrenia. DISC1-PDE4B complexes are therefore likely to be involved in molecular mechanisms underlying psychiatric illness. PDE4B hydrolyses cAMP and DISC1 may regulate cAMP signalling through modulating PDE4B activity. There is evidence that expression of both genes is altered in some psychiatric patients. Moreover, DISC1 missense mutations that give rise to phenotypes related to schizophrenia and depression in mice are located within binding sites for PDE4B. These mutations reduce the association between DISC1 and PDE4B, and one results in reduced brain PDE4B activity. Altered DISC1-PDE4B interaction may thus underlie the symptoms of some cases of schizophrenia and depression. Factors likely to influence this interaction include expression levels, binding site affinities and the DISC1 and PDE4 isoforms involved. DISC1 and PDE4 isoforms are targeted to specific subcellular locations which may contribute to the compartmentalization of cAMP signalling. Dysregulated cAMP signalling in specific cellular compartments may therefore be a predisposing factor for major mental illness.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
6J. Neurosci. 2007 Aug 27: 9513-24
PMID17728464
TitleIsoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels.
AbstractDisrupted-in-schizophrenia 1 (DISC1) is a genetic susceptibility factor for schizophrenia and related severe psychiatric conditions. DISC1 is a multifunctional scaffold protein that is able to interact with several proteins, including the independently identified schizophrenia risk factor phosphodiesterase-4B (PDE4B). Here we report that the 100 kDa full-length DISC1 isoform (fl-DISC1) can bind members of each of the four gene, cAMP-specific PDE4 family. Elevation of intracellular cAMP levels, so as to activate protein kinase A, caused the release of PDE4D3 and PDE4C2 isoforms from fl-DISC1 while not affecting binding of PDE4B1 and PDE4A5 isoforms. Using a peptide array strategy, we show that PDE4D3 binds fl-DISC1 through two regions found in common with PDE4B isoforms, the interaction of which is supplemented because of the presence of additional PDE4B-specific binding sites. We propose that the additional binding sites found in PDE4B1 underpin its resistance to release during cAMP elevation. We identify, for the first time, a functional distinction between the 100 kDa long DISC1 isoform and the short 71 kDa isoform. Thus, changes in the expression pattern of DISC1 and PDE4 isoforms offers a means to reprogram their interaction and to determine whether the PDE4 sequestered by DISC1 is released after cAMP elevation. The PDE4B-specific binding sites encompass point mutations in mouse Disc1 that confer phenotypes related to schizophrenia and depression and that affect binding to PDE4B. Thus, genetic variation in DISC1 and PDE4 that influence either isoform expression or docking site functioning may directly affect psychopathology.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
7Neuron 2007 May 54: 387-402
PMID17481393
TitleBehavioral phenotypes of Disc1 missense mutations in mice.
AbstractTo support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
8J. Pharmacol. Exp. Ther. 2007 Aug 322: 600-9
PMID17519386
TitlePDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6).
AbstractThe cAMP-specific phosphodiesterase-4 (PDE4) gene family is the target of several potential selective therapeutic inhibitors. The four PDE4 genes generate several distinct protein-coding isoforms through the use of alternative promoters and 5'-coding exons. Using mouse transcripts, we identified a novel, super-short isoform of human PDE4B encoding a novel 5' terminus, which we label PDE4B5. The protein-coding region of the novel 5' exon is conserved across vertebrates, chicken, zebrafish, and fugu. Reverse-transcription-polymerase chain reaction (PCR) and quantitative (PCR) measurements show that this isoform is brain-specific. The novel protein is 58 +/- 2 kDa; it has cAMP hydrolyzing enzymatic activity and is inhibited by PDE4-selective inhibitors rolipram and cilomilast (Ariflo). Confocal and subcellular fractionation analyses show that it is distributed predominantly and unevenly within the cytosol. The 16 novel N-terminal residues of PDE4B5 are identical to the 16 N-terminal residues of the super-short isoform of PDE4D (PDE4D6), which is also brain-specific. PDE4B5 is able to bind the scaffold protein DISC1, whose gene has been linked to schizophrenia. Microarray expression profiling of the PDE4 gene family shows that specific PDE4 genes are enriched in muscle and blood fractions; however, only by monitoring the individual isoforms is the brain specificity of the super-short PDE4D and PDE4B isoforms revealed. Understanding the distinct tissue specificity of PDE4 isoforms will be important for understanding phosphodiesterase biology and opportunities for therapeutic intervention.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
9Neuron 2007 May 54: 387-402
PMID17481393
TitleBehavioral phenotypes of Disc1 missense mutations in mice.
AbstractTo support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
10Neuroreport 2007 Nov 18: 1841-4
PMID18090323
TitleExpression of phosphodiesterase 4 is altered in the brains of subjects with autism.
AbstractThe cyclic adenosine monophosphate-specific phosphodiesterase-4 (PDE4) gene family is the target of several potential therapeutic inhibitors and the PDE4B gene has been associated with schizophrenia and depression. Little, however, is known of any connection between this gene family and autism, with limited effective treatment being available for autism. We measured the expression of PDE4A and PDE4B by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting in Brodmann's area 40 (BA40, parietal cortex), BA9 (superior frontal cortex), and cerebellum from subjects with autism and matched controls. We observed a lower expression of PDE4A5, PDE4B1, PDE4B3, PDE4B4, and PDE4B2 in the cerebella of subjects with autism when compared with matched controls. In BA9, we observed the opposite: a higher expression of PDE4AX, PDE4A1, and PDE4B2 in subjects with autism. No changes were observed in BA40. Our results demonstrate altered expressions of the PDE4A and PDE4B proteins in the brains of subjects with autism and might provide new therapeutic avenues for the treatment of this debilitating disorder.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
11Psychopharmacology (Berl.) 2007 Jun 192: 415-24
PMID17333137
TitleAntipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme.
AbstractRecent studies provide evidence for reduced phosphodiesterase-4B (PDE4B) as a genetic susceptibility factor as well as suggesting an association of several single nucleotide polymorphisms (SNPs) in PDE4B that are associated with an increased incidence of schizophrenia.
The aim of the current study was to assess the activity of rolipram, a nonsubtype-selective PDE4 inhibitor, in several animal models predictive of antipsychotic-like efficacy and side-effect liability and to use PDE4B wild-type and knockout mice to begin to understand the subtypes involved in the activity of rolipram.
In rats, rolipram antagonized both phencyclidine hydrochloride- and D-amphetamine-induced hyperactivity and inhibited conditioned avoidance responding (CAR). In PDE4B wild-type mice, rolipram dose-dependently suppressed CAR (ED(50) = 2.4 mg/kg); however, in knockout mice, their sensitivity to rolipram at the higher doses (1.0 and 3.2 mg/kg) was reduced, resulting in a threefold shift in the ED(50) (7.3 mg/kg), suggesting PDE4B is involved, at least in part, with the activity of rolipram. Only the highest dose of rolipram (3.2 mg/kg) produced a modest but significant degree of catalepsy.
Rolipram has a pharmacologic profile similar to that of the atypical antipsychotics and has low extrapyramidal symptom liability. These results suggest that PDE4B mediates the antipsychotic effects of rolipram in CAR and that the PDE4B-regulated cyclic adenosine monophosphate signaling pathway may play a role in the pathophysiology and pharmacotherapy of psychosis.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
12Psychiatr. Genet. 2007 Jun 17: 129-33
PMID17417055
TitleThe PDE4B gene confers sex-specific protection against schizophrenia.
AbstractPhosphodiesterase 4B (PDE4B) is a candidate gene for schizophrenia and affective disorders through its disruption by a chromosomal translocation in an individual with schizophrenia, its inhibition by the antidepressant rolipram, and its physical interaction with another key candidate, Disrupted in schizophrenia (DISC1).
To determine the contribution made by PDE4B to the population risk of schizophrenia and bipolar disorder by carrying out a case-control association study.
Twenty-six tagging single nucleotide polymorphisms were selected across the PDE4B gene and genotyped in DNA samples from 386 schizophrenia cases, 368 bipolar disorder cases and 455 controls.
Single single nucleotide polymorphisms and a resulting haplotype conferred a protective effect against schizophrenia in the female population. The haplotype result remained significant after correction for multiple testing (P=0.012).
The observation that a PDE4B haplotype alters the genetic risk of schizophrenia in the Scottish population complements the known participation of this gene in biological processes associated with mental illness. Further studies are needed to replicate this finding and identify underlying sequence variants.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
13Curr. Opin. Neurobiol. 2007 Feb 17: 95-102
PMID17258902
TitleRole of DISC1 in neural development and schizophrenia.
AbstractHow can we hope to explain mechanistically the schizophrenic phenotype? Perhaps through the reductionist approach of genetics, which is beginning to yield biological clues. Growing evidence supports the view that the well-established genetic risk factor DISC1 plays an important role in schizophrenia biology by interacting with FEZ1 and NDEL1 during neurodevelopment and with the phosphodiesterase PDE4B in neuronal cell signalling. Thus, DISC1 and its pathways support the neurodevelopmental hypothesis of schizophrenia and provide a mechanistic explanation for the characteristic cognitive deficits. Genetic variants of DISC1 also predispose to related affective (mood) disorders. As a consequence, we can speculate on the mechanisms of DISC1 action and possible routes to treatment for these common, debilitating brain disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
14Curr. Opin. Neurobiol. 2007 Feb 17: 95-102
PMID17258902
TitleRole of DISC1 in neural development and schizophrenia.
AbstractHow can we hope to explain mechanistically the schizophrenic phenotype? Perhaps through the reductionist approach of genetics, which is beginning to yield biological clues. Growing evidence supports the view that the well-established genetic risk factor DISC1 plays an important role in schizophrenia biology by interacting with FEZ1 and NDEL1 during neurodevelopment and with the phosphodiesterase PDE4B in neuronal cell signalling. Thus, DISC1 and its pathways support the neurodevelopmental hypothesis of schizophrenia and provide a mechanistic explanation for the characteristic cognitive deficits. Genetic variants of DISC1 also predispose to related affective (mood) disorders. As a consequence, we can speculate on the mechanisms of DISC1 action and possible routes to treatment for these common, debilitating brain disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
15Biol. Psychiatry 2007 Jan 61: 56-64
PMID16814262
TitleChronic nicotine doses down-regulate PDE4 isoforms that are targets of antidepressants in adolescent female rats.
AbstractPrevious data in humans and animal models has suggested connections between anxiety, depression, smoking behavior, and nicotine dependence. The importance of these connections has been confirmed by clinical studies that led to the recent FDA approval of an anti-depressant (Zyban) for use in human smoking cessation programs. Other anti-depressants (such as rolipram) specifically inhibit PDE4 phosphodiesterases.
We used DNA microarrays to discover gene expression changes in adolescent female rats following chronic nicotine treatments, and real-time PCR assays to confirm and extend those results.
We found a consistent decrease in the mRNA levels encoded by the PDE4B gene in nucleus accumbens, prefrontal cortex, and hippocampus of adolescent female rats treated with .24 mg/day nicotine, and in prefrontal cortex of adolescent female rats treated with .12 mg/day nicotine. We further show that each of these brain areas produced a different profile of PDE4B isoforms.
Chronic nicotine treatments produce a dose-dependent down-regulation of PDE4B, which may have an antidepressant effect. This is the first report of a link between nicotine dependence and phosphodiesterase gene expression. Our results also add to the complex interrelationships between smoking and schizophrenia, because mutations in the PDE4B gene are associated with schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
16Biochem. Biophys. Res. Commun. 2008 Dec 377: 1091-6
PMID18983980
TitleDISC1, PDE4B, and NDE1 at the centrosome and synapse.
AbstractDisrupted-In-schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
17Schizophr. Res. 2008 Apr 101: 36-49
PMID18394866
TitlePDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia.
Abstractschizophrenia has a complex genetic underpinning and variations in a number of candidate genes have been identified that confer risk of developing the disorder. We report in the present studies that several single nucleotide polymorphisms (SNPs) and a two-SNP haplotype in PDE4B are associated with an increased incidence of schizophrenia in two large populations of Caucasian and African American patients. The SNPs in PDE4B associated with schizophrenia occur in intronic sequences in the vicinity of a critical splice junction that gives rise to the expression of PDE4B isoforms with distinct regulation and function. We also observed specific decreases in phosphodiesterase 4B (PDE4B) isoforms in brain tissue obtained postmortem from patients diagnosed with schizophrenia and bipolar disorder. PDE4B metabolically inactivates the second messenger cAMP to regulate intracellular signaling in neurons throughout the brain. Thus, the present observations suggest that dysregulation of intracellular signaling mediated by PDE4B is a significant factor in the cause and expression, respectively, of schizophrenia and bipolar disorder and that targeting PDE4B-regulated signaling pathways may yield new therapies to treat the totality of these disorders.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
18Psychopharmacology (Berl.) 2008 Mar 197: 115-26
PMID18060387
TitleBehavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme.
AbstractPhosphodiesterases (PDEs) belonging to the PDE4 family control intracellular concentrations of cyclic adenosine monophosphate (cAMP) by catalyzing its hydrolysis. Four separate PDE4 genes (PDE4A, PDE4B, PDE4C, and PDE4D) have been identified. PDE4 has been reported to be involved in various central nervous system (CNS) functions including depression, memory, and schizophrenia, although the specific subtype mediating these effects remains unclear.
To investigate the role of PDE4B in the CNS, PDE4B wild-type and knockout mice (C57BL/6N background) were assessed in a variety of well-characterized behavioral tasks, and their brains were assayed for monoamine content.
Knockout mice showed a significant reduction in prepulse inhibition. Spontaneous locomotor activity was decreased (16%) in knockout mice. Furthermore, when challenged with amphetamine, both groups of mice responded similarly to a low dose of d-amphetamine (1.0 mg/kg), but knockout mice showed an enhanced response to a higher dose (1.78 mg/kg). Decreases in baseline levels of monoamines and their metabolites within the striatum of knockout mice were also observed. PDE4B knockout mice showed a modest decrease in immobility time in the forced swim test that approached significance. In several other tests, including the elevated plus maze, hot plate, passive avoidance, and Morris water maze, wild-type and knockout mice performed similarly.
The present studies demonstrate decreased striatal DA and 5-HT activity in the PDE4B knockout mice associated with decreased prepulse inhibition, decreased baseline motor activity, and an exaggerated locomotor response to amphetamine. These data further support a role for PDE4B in psychiatric diseases and striatal function.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
19J Psychiatr Res 2008 Nov 43: 7-12
PMID18329668
TitlePositive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the Japanese population.
AbstractThe phosphodiesterase 4B (PDE4B) gene is located at 1p31, a susceptibility region for schizophrenia (SZ). Moreover, PDE4B interacts with DISC1, which is a known genetic risk factor for SZ. Recently, it was reported that the PDE4B gene is associated with SZ in Caucasian and African American populations. In this study, case-controlled association analyses were performed in the Japanese population to determine if the PDE4B gene is implicated in SZ. Thirteen single nucleotide polymorphisms (SNPs) were analyzed in 444 schizophrenic patients and 452 control subjects. Three SNPs (rs2180335, rs910694 and rs472952) were significantly associated with SZ after applying multiple test correction (p=0.039, 0.004 and 0.028). In addition, a significant association was found between specific haplotypes (rs2180335 and rs910694) and SZ (permutation p=0.001). Our result suggests that variations at the PDE4B locus may play a significant role in the etiology of SZ in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
20J Psychiatr Res 2008 Nov 43: 7-12
PMID18329668
TitlePositive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the Japanese population.
AbstractThe phosphodiesterase 4B (PDE4B) gene is located at 1p31, a susceptibility region for schizophrenia (SZ). Moreover, PDE4B interacts with DISC1, which is a known genetic risk factor for SZ. Recently, it was reported that the PDE4B gene is associated with SZ in Caucasian and African American populations. In this study, case-controlled association analyses were performed in the Japanese population to determine if the PDE4B gene is implicated in SZ. Thirteen single nucleotide polymorphisms (SNPs) were analyzed in 444 schizophrenic patients and 452 control subjects. Three SNPs (rs2180335, rs910694 and rs472952) were significantly associated with SZ after applying multiple test correction (p=0.039, 0.004 and 0.028). In addition, a significant association was found between specific haplotypes (rs2180335 and rs910694) and SZ (permutation p=0.001). Our result suggests that variations at the PDE4B locus may play a significant role in the etiology of SZ in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
21Novartis Found. Symp. 2008 -1 289: 208-16; discussion 216-21, 238-40
PMID18497105
TitleWhat can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology?
AbstractEmerging genetic and biological data strongly supports Disrupted in schizophrenia 1 (DISC1) as a schizophrenia risk gene of great significance for not only understanding the underlying causes of schizophrenia and related disorders but potentially to open up new avenues of treatment. DISC1 appeared to be a very enigmatic protein upon the initial disclosure of its protein sequence. Though it contained some well-characterized protein domains, they did not reveal anything about possible function. Recently, the identification of its binding partners has revealed an incredible diversity of potential cellular and physiological functions. In an attempt to capture this information we set out to generate a comprehensive network of protein-protein interactions (PPIs) around DISC1. This was achieved by utilizing iterative yeast-two hybrid screens, combined with detailed pathway and functional analysis. This so-called 'DISC1 interactome' contains many novel PPIs and has provided a molecular framework to explore the function of DISC1. Interrogation of the interactome has shown DISC1 to have a PPI profile consistent with that of an essential synaptic protein, which fits well with the underlying molecular pathology observed at the synaptic level and the cognitive deficits seen behaviourally in schizophrenics. Furthermore, potential novel therapeutic targets have also emerged as we have characterized in detail the interactions with the phosphodiesterase PDE4B in collaboration with the Porteous and Houslay labs, and with Ndel1-EOPA with Hayashi and colleagues. Many components of the interactome are themselves now being shown to be schizophrenia risk genes, or to interact with other risk genes, emphasising the power of protein interaction studies for revealing the underlying biology of a disease.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
22Novartis Found. Symp. 2008 -1 289: 208-16; discussion 216-21, 238-40
PMID18497105
TitleWhat can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology?
AbstractEmerging genetic and biological data strongly supports Disrupted in schizophrenia 1 (DISC1) as a schizophrenia risk gene of great significance for not only understanding the underlying causes of schizophrenia and related disorders but potentially to open up new avenues of treatment. DISC1 appeared to be a very enigmatic protein upon the initial disclosure of its protein sequence. Though it contained some well-characterized protein domains, they did not reveal anything about possible function. Recently, the identification of its binding partners has revealed an incredible diversity of potential cellular and physiological functions. In an attempt to capture this information we set out to generate a comprehensive network of protein-protein interactions (PPIs) around DISC1. This was achieved by utilizing iterative yeast-two hybrid screens, combined with detailed pathway and functional analysis. This so-called 'DISC1 interactome' contains many novel PPIs and has provided a molecular framework to explore the function of DISC1. Interrogation of the interactome has shown DISC1 to have a PPI profile consistent with that of an essential synaptic protein, which fits well with the underlying molecular pathology observed at the synaptic level and the cognitive deficits seen behaviourally in schizophrenics. Furthermore, potential novel therapeutic targets have also emerged as we have characterized in detail the interactions with the phosphodiesterase PDE4B in collaboration with the Porteous and Houslay labs, and with Ndel1-EOPA with Hayashi and colleagues. Many components of the interactome are themselves now being shown to be schizophrenia risk genes, or to interact with other risk genes, emphasising the power of protein interaction studies for revealing the underlying biology of a disease.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
23Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009 Jun 150B: 527-34
PMID18785206
TitleGene expression and association analyses of the phosphodiesterase 4B (PDE4B) gene in major depressive disorder in the Japanese population.
AbstractThe phosphodiesterase 4B (PDE4B) interacts with disrupted-in-schizophrenia 1 (DISC1), which is a known genetic risk factor for schizophrenia, bipolar disorder and major depressive disorder (MDD). PDE4B is also important in the regulation of cAMP signaling, a second messenger implicated in learning, memory, and mood. In this study, we determined mRNA expression levels of the PDE4B gene in the peripheral blood leukocytes of patients with MDD and control subjects (n = 33, each). Next we performed two-stage case-controlled association analyses (first set; case = 174, controls = 348; second set; case = 481, controls = 812) in the Japanese population to determine if the PDE4B gene is implicated in MDD. In the leukocytes, a significantly higher expression of the PDE4B mRNA was observed in the drug-naïve MDD patients compared with control subjects (P < 0.0001) and the expression of the MDD patients significantly decreased after antidepressant treatment (P = 0.030). In the association analysis, we observed significant allelic associations of four SNPs (the most significant, rs472952; P = 0.002) and a significant haplotypic association (permutation P = 0.019) between the PDE4B gene and MDD in the first-set samples. However, we could not confirm these significant associations in the following independent second-set of samples. Our results suggest that the PDE4B gene itself does not link to MDD but the elevated mRNA levels of PDE4B might be implicated in the pathophysiology of MDD.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
24J. Neurogenet. 2009 -1 23: 341-52
PMID19225952
TitleSurvey of schizophrenia and bipolar disorder candidate genes using chromatin immunoprecipitation and tiled microarrays (ChIP-chip).
AbstractIt has been difficult to identify disease-causing alleles in schizophrenia (SZ) and bipolar disorder (BD) candidate genes. One reason is that responsible functional variants may exist in unidentified regulatory domains. With the advent of microarray technology and high throughput sequencing, however, it is now feasible to screen genes for such regulatory domains relatively easily by using chromatin immunoprecipitation-based methodologies, such as ChIP-chip and ChIP-seq. In ChIP-chip, regulatory sequences can be captured from chromatin immunoprecipitates prepared with antibodies against covalently modified histones that mark certain regulatory domains; DNA extracted from such immunoprecipitates can then be used as microarray probes. As a first step toward demonstrating the feasibility of this approach in psychiatric genetics, we used ChIP-chip to identify regulatory domains in several candidate genes: NRG1, DTNBP1, DISC1, DAO, DAOA, PDE4B, and COMT. Immunoprecipitates were generated with antibodies to histone H3 acetylated at lysine 9 (H3K9Ac) and histone H3 monomethylated at lysine 4 (H3K4me1), which mark promoters and some enhancers, using fetal brain chromatin as a substrate. Several novel putative regulatory elements, as well as the core and proximal promoters for each gene, were enriched in the immunoprecipitates. Genetic variants within these regions would be of interest to study as potential disease-associated alleles.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
25Schizophr. Res. 2009 Oct 114: 39-49
PMID19632097
TitleGenetic association and post-mortem brain mRNA analysis of DISC1 and related genes in schizophrenia.
AbstractConvergent evidence from genetic linkage, genetic association and biological studies implicates the Disrupted in schizophrenia 1 (DISC1) gene in the etiology and pathophysiology of schizophrenia. We conducted genetic association studies in matched case-control and family sample sets (N=117 families; N=210 case-control pairs), testing polymorphisms across DISC1 and DISC1 interacting genes: LIS1, NUDEL, FEZ1 and PDE4B. We found that DISC1 variants, particularly in the exon 9/intron 9/intron 10 region of the gene, may be associated with risk for schizophrenia in our sample population. There was no strong evidence for association with LIS1, NUDEL, FEZ1 and PDE4B. Gene-gene interaction analyses and mRNA quantification in post-mortem brains from schizophrenia patients and control subjects did not reveal significant differences.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
26PLoS ONE 2009 -1 4: e4906
PMID19300510
TitleThe DISC1 pathway modulates expression of neurodevelopmental, synaptogenic and sensory perception genes.
AbstractGenetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.
Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.
Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
27Rev Neurosci 2009 -1 20: 321-30
PMID20397618
TitleDISCopathies: brain disorders related to DISC1 dysfunction.
AbstractDuring the last decade, disrupted-in-schizophrenia 1 (DISC1) has emerged as a protein involved in the pathogenesis of chronic mental diseases such as schizophrenia, or recurrent affective disorders. Its multiple functions include regulating corticogenesis, synapse integrity and adult neurogenesis, indicating a key role in the hard-wiring and the maintenance of communicative abilities of the brain. From its cellular functions, the DISC1 protein is a 'molecular facilitator', which interacts with a quartenary complex including NDEL1, NDE1, LIS1, as well as the signaling molecules, GSK-3beta, PDE4B, and others. DISC1 oligomerizes, can form misassembled dysfunctional multimers as well as disease-associated insoluble protein complexes which qualify these diseases as protein conformational disorders. Disease categories ultimately serve the goal of defining pathophysiological conditions amenable to similar and efficient (pharmaco) therapies. Here, it is proposed to classify brain disorders related to dysfunctional DISC1 protein as one disease entity, that is, as DISCopathies.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
28Biol. Psychiatry 2009 Jun 65: 1055-62
PMID19251251
TitleAssociation between genes of Disrupted in schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses.
AbstractDisrupted in schizophrenia 1 (DISC1) is currently one of the most interesting candidate genes for major mental illness, having been demonstrated to associate with schizophrenia, bipolar disorder, major depression, autism, and Asperger's syndrome. We have previously reported a DISC1 haplotype, HEP3, and an NDE1 spanning tag haplotype to associate to schizophrenia in Finnish schizophrenia families. Because both DISC1 and NDE1 display association in our study sample, we hypothesized that other genes interacting with DISC1 might also have a role in the etiology of schizophrenia.
We selected 11 additional genes encoding components of the "DISC1 pathway" and studied these in our study sample of 476 families including 1857 genotyped individuals. We performed single nucleotide polymorphism (SNP) and haplotype association analyses in two independent sets of families. For markers and haplotypes found to be consistently associated in both sets, the overall significance was tested with the combined set of families.
We identified three SNPs to be associated with schizophrenia in PDE4D (rs1120303, p = .021), PDE4B (rs7412571, p = .018), and NDEL1 (rs17806986, p = .0038). Greater significance was observed with allelic haplotypes of PDE4D (p = .00084), PDE4B (p = .0022 and p = .029), and NDEL1 (p = .0027) that increased or decreased schizophrenia susceptibility.
Our findings with other converging lines of evidence support the underlying importance of DISC1-related molecular pathways in the etiology of schizophrenia and other major mental illnesses.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
29Am J Psychiatry 2009 Feb 166: 206-15
PMID18829870
TitleStrong evidence for a novel schizophrenia risk locus on chromosome 1p31.1 in homogeneous pedigrees from Tamil Nadu, India.
AbstractThe study of ethnically homogeneous populations may help to identify schizophrenia risk loci. The authors conducted a genomewide linkage scan for schizophrenia in an Indian population.
Participants were 441 individuals (262 affected probands and siblings) who were recruited primarily from one ethnically homogeneous group, the Tamil Brahmin caste, although individuals from other geographically proximal castes also participated. Genotyping of 124 affected sibling pair pedigrees was performed with 402 short tandem repeat polymorphisms. Linkage analyses were conducted using nonparametric exponential LOD (logarithm of the odds ratio for linkage) scores and parametric heterogeneity LOD scores. Parametric heterogeneity scores were calculated using simple dominant and recessive models, correcting for multiple statistics. The data were examined for evidence of consanguinity. Genomewide significance levels were determined using 10,000 gene dropping simulations.
These findings revealed genomewide significant linkage to chromosome 1p31.1, through the use of both exponential and heterogeneity LOD scores, incorporating correction for multiple statistics and mild consanguinity. The estimated sibling recurrence risk associated with this putative locus was 1.95. Analysis for heterogeneity LOD scores also detected suggestive linkage to chromosomes 13q22.1 and 16q12.2. Using 117 tag single nucleotide polymorphisms (SNPs), family-based association analyses of phosphodiesterase 4B (PDE4B), the closest schizophrenia candidate gene, detected no convincing evidence of association, suggesting that the chromosome 1 peak represents a novel risk locus.
This is the first study-to the authors' knowledge-to report significant linkage of schizophrenia to chromosome 1p31.1. Further investigation of this chromosome region in diverse populations is warranted to identify underlying sequence variants.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
30Synapse 2010 Jul 64: 550-5
PMID20222156
TitleLevels of phosphodiesterase 4A and 4B are altered by chronic treatment with psychotropic medications in rat frontal cortex.
AbstractOur laboratory has recently demonstrated altered expression of phosphodiesterase (PDE) 4A and 4B in subjects with autism, bipolar disorder, and schizophrenia, suggesting disrupted cAMP signaling in these diagnostic groups. In the current study, we measured expression of PDEs in rat frontal cortex (FC) following chronic treatment with clozapine, fluoxetine, haloperidol, lithium, olanzapine, valproic acid (VPA), or sterile saline for 21 days. Western blotting experiments showed decreased expression of PDE4A subtypes in FC following treatment with clozapine, haloperidol, lithium, and VPA. PDE4B subtypes were similarly reduced in FC following treatment with clozapine, fluoxetine, and lithium. We also measured levels of nine PDE subtypes via qRT-PCR in FC and found significant upregulation of PDE1A and PDE8B following treatment with olanzapine, while treatment with lithium reduced expression of mRNA for PDE8B. Our results demonstrate altered expression of PDE4A and PDE4B in response to a variety of psychotropic medications suggesting potentially new therapeutic avenues for treatment of neuropsychiatric diseases.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
31Int Clin Psychopharmacol 2010 Sep 25: 264-9
PMID20436352
TitlePhosphodiesterase 4B genetic variants are not associated with antipsychotic-induced tardive dyskinesia.
AbstractPhosphodiesterase 4B (PDE4B) has been evaluated as a genetic risk factor for schizophrenia. Selective PDE4 inhibitor drugs have antipsychotic-like effects and reduce tardive dyskinesia-like movements in animal models. We investigated whether PDE4B genetic variants are associated with antipsychotic-induced tardive dyskinesia incidence and severity in schizophrenia patients. Our sample consisted of 169 Caucasian patients taking typical antipsychotic medication for at least 1 year. We found two PDE4B gene variants to be nominally associated with tardive dyskinesia (rs1338719 and rs7528545) in the overall population and two other variants nominally associated with the presence of tardive dyskinesia and severity in female patients (rs1890196 and rs783036). None of these results survived correction for multiple testing. Overall, our results do not support a genetic association between tardive dyskinesia and PDE4B.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
32Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010 Jan 153B: 86-96
PMID19350560
TitleAssociation study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples.
AbstractThe phosphodiesterase 4B (PDE4B), which is involved in cognitive function in animal models, is a candidate susceptibility gene for schizophrenia (SZ) and bipolar disorder (BP). Variations in PDE4B have previously been associated with SZ, with a suggested gender-specific effect. We have genotyped and analyzed 40 and 72 tagging single nucleotide polymorphisms (tagSNPs) in SZ and BP multicenter samples, respectively, from the Scandinavian Collaboration on Psychiatric Etiology (SCOPE), involving 837 SZ cases and 1,473 controls plus 594 BP cases and 1,421 partly overlapping controls. Six and 16 tagSNPs were nominally associated (0.0005 < or = P < or = 0.05) with SZ and BP, respectively, in the combined samples or in gender-specific subgroups. None of these findings remained significant after correction for multiple testing. However, a number of tagSNPs found to be nominally associated with SZ and BP were located in a high LD region spanning the splice site of PDE4B3, an isoform with altered brain expression in BP patients. Four tagSNPs were associated with SZ in women, but none in men, in agreement with the previously reported gender-specific effect. Proxies of two nominally associated SNPs in the SZ sample were also associated with BP, but the genotypic effect (i.e., homozygosity for the minor allele), pointed in opposite directions. Finally, four SNPs were found to be associated with Positive And Negative Syndrome Scale (PANSS) positive symptom scores in a subgroup of SZ patients (n = 153) or SZ female patients (n = 70). Further studies are needed to evaluate the implicated PDE4B region of interest, for potential involvement in SZ and BP susceptibility.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
33Transl Psychiatry 2011 -1 1: e22
PMID22832524
TitleAssociation of VSNL1 with schizophrenia, frontal cortical function, and biological significance for its gene product as a modulator of cAMP levels and neuronal morphology.
AbstractWe report an association of single-nucleotide polymorphisms (SNPs) for the VSNL1 gene (visinin-like 1) with schizophrenia and frontal cortical function in a sample of patients with Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) diagnoses of schizophrenia, compared with healthy controls. Moreover, VSNL1 SNPs were associated with performance in the Wisconsin Card Sorting Test, a measure for the assessment of frontal cortical function. The VSNL1 gene product, Visinin-like-protein-1 (VILIP-1), is a member of the neuronal EF-hand Ca(2+)-sensor protein family. Previously, VILIP-1 mRNA and protein expression were shown to be altered in animal models and in schizophrenia patients. VILIP-1 influences cytosolic cyclic adenosine mono phosphate (cAMP) levels, cell migration, exocytotic processes and differentiation in the periphery. This raises the question, whether, similar to other potential schizophrenia susceptibility genes such as Disc1, PDE4B and Akt, VSNL1 may affect cAMP signaling and neurite outgrowth in neurons. In dissociated rat hippocampal neurons, VILIP-1 small interfering RNA knockdown decreased cAMP levels and reduced dendrite branching, compared with control-transfected cells. In contrast, VILIP-1 overexpression had the opposite effect. Similar results have been obtained in the human dopaminergic neuronal cell line SH-SY5Y, where the effect on neurite branching and length was attenuated by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and the protein kinase A inhibitor KT5720. These results show that the association of VSNL1 SNPs with the disease and cognitive impairments, together with previously observed pathological changes in VILIP-1 protein expression, possibly occurring during brain development, may contribute to the morphological and functional deficits observed in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
34PLoS ONE 2011 -1 6: e23450
PMID21853134
TitleSequencing of DISC1 pathway genes reveals increased burden of rare missense variants in schizophrenia patients from a northern Swedish population.
AbstractIn recent years, DISC1 has emerged as one of the most credible and best supported candidate genes for schizophrenia and related neuropsychiatric disorders. Furthermore, increasing evidence--both genetic and functional--indicates that many of its protein interaction partners are also involved in the development of these diseases. In this study, we applied a pooled sample 454 sequencing strategy, to explore the contribution of genetic variation in DISC1 and 10 of its interaction partners (ATF5, Grb2, FEZ1, LIS-1, PDE4B, NDE1, NDEL1, TRAF3IP1, YWHAE, and ZNF365) to schizophrenia susceptibility in an isolated northern Swedish population. Mutation burden analysis of the identified variants in a population of 486 SZ patients and 514 control individuals, revealed that non-synonymous rare variants with a MAF<0.01 were significantly more present in patients compared to controls (8.64% versus 4.7%, P?=?0.018), providing further evidence for the involvement of DISC1 and some of its interaction partners in psychiatric disorders. This increased burden of rare missense variants was even more striking in a subgroup of early onset patients (12.9% versus 4.7%, P?=?0.0004), highlighting the importance of studying subgroups of patients and identifying endophenotypes. Upon investigation of the potential functional effects associated with the identified missense variants, we found that ?90% of these variants reside in intrinsically disordered protein regions. The observed increase in mutation burden in patients provides further support for the role of the DISC1 pathway in schizophrenia. Furthermore, this study presents the first evidence supporting the involvement of mutations within intrinsically disordered protein regions in the pathogenesis of psychiatric disorders. As many important biological functions depend directly on the disordered state, alteration of this disorder in key pathways may represent an intriguing new disease mechanism for schizophrenia and related neuropsychiatric diseases. Further research into this unexplored domain will be required to elucidate the role of the identified variants in schizophrenia etiology.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
35Transl Psychiatry 2011 -1 1: e30
PMID22832604
TitleInteractions of human truncated DISC1 proteins: implications for schizophrenia.
AbstractNumerous genetic linkage and association reports have implicated the Disrupted-in-schizophrenia (DISC1) gene in psychiatric illness. The Scottish family translocation, predicted to encode a C-terminus-truncated protein, suggests involvement of short isoforms in the pathophysiology of mental disorders. We recently reported complex alternative splicing patterns for the DISC1 gene and found that short isoforms are overexpressed in the brains of patients with schizophrenia and in carriers of risk-associated alleles. Investigation into the protein-protein interactions of alternative DISC1 isoforms may provide information about the functional consequences of overexpression of truncated forms in mental illness. Human embryonic kidney (HEK293) cells were transiently co-transfected with human epitope-tagged DISC1 variants and epitope-tagged NDEL1, FEZ1, GSK3? and PDE4B constructs. Co-immunoprecipitation assays demonstrated that all truncated DISC1 variants formed complexes with full-length DISC1. Short DISC1 splice variants L?78, L?3 and Esv1 showed reduced or no binding to NDEL1 and PDE4B proteins, but fully interacted with FEZ1 and GSK3?. The temporal expression pattern of GSK3? in the human postmortem tissue across the lifespan closely resembled that of the truncated DISC1 variants, suggesting the possibility of interactions between these proteins in the human brain. Our results suggest that complexes of full-length DISC1 with truncated DISC1 variants may result in cellular disturbances critical to DISC1 function.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
36Neuropharmacology 2012 Mar 62: 1230-41
PMID21195721
TitleDISC1-binding proteins in neural development, signalling and schizophrenia.
AbstractIn the decade since Disrupted in schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3?), neurosignalling (Girdin, GSK3?, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
37Psychopharmacology (Berl.) 2012 Feb 219: 1065-79
PMID21833500
TitlePhosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex.
AbstractAlteration of dopamine neurotransmission in the prefrontal cortex, especially hypofunction of dopamine D1 receptors, contributes to psychotic symptoms and cognitive deficit in schizophrenia. D1 receptors signal through the cAMP/PKA second messenger cascade, which is modulated by phosphodiesterase (PDE) enzymes that hydrolyze and inactivate cyclic nucleotides. Though several PDEs are expressed in cortical neurons, the PDE4 enzyme family (PDE4A-D) has been implicated in the control of cognitive function. The best studied isoform, PDE4B, interacts with a schizophrenia susceptibility factor, disrupted in schizophrenia 1 (DISC1).
We explore the control of mouse frontal cortex dopamine D1 receptor signaling and associated behavior by PDE4.
Inhibition of PDE4 by rolipram induced activation of cAMP/PKA signaling in cortical slices and in vivo, leading to the phosphorylation of DARPP-32 and other postsynaptic and presynaptic PKA-substrates. Rolipram also enhanced DARPP-32 phosphorylation invoked by D1 receptor activation. Immunohistochemical studies demonstrated PDE4A, PDE4B, and PDE4D expression in DARPP-32-positive neurons in layer VI of frontal cortex, most likely in D1 receptor-positive, glutamatergic corticothalamic pyramidal neurons. Furthermore, the ability of rolipram treatment to improve the performance of mice in a sensorimotor gating test was DARPP-32-dependent.
PDE4, which is co-expressed with DARPP-32 in D1 receptor-positive cortical pyramidal neurons in layer VI, modulates the level of D1 receptor signaling and DARPP-32 phosphorylation in the frontal cortex, likely influencing cognitive function. These biochemical and behavioral actions of PDE4 inhibitors may contribute to the hypothesized antipsychotic actions of this class of compounds.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
38Neuropharmacology 2012 Mar 62: 1252-62
PMID21376063
TitleSynergistic interactions between PDE4B and GSK-3: DISC1 mutant mice.
AbstractDisrupted-In-schizophrenia-1 (DISC1) is a strong genetic risk factor associated with psychiatric disorders. Two distinct mutations in the second exon of the DISC1 gene (Q31L and L100P) lead to either depression- or schizophrenia-like behavior in mice. Both phosphodiesterase-4B (PDE4B) and glycogen synthase kinase-3 (GSK-3) have common binding sites on N-terminal region of DISC1 and are implicated into etiology of schizophrenia and depression. It is not known if PDE4B and GSK-3 could converge signals in the cell via DISC1 at the same time. The purpose of the present study was to assess whether rolipram (PDE4 inhibitor) might synergize with TDZD-8 (GSK-3 blocker) to produce antipsychotic effects at low doses on the DISC1-L100P genetic model. Indeed, combined treatment of DISC1-L100P mice with rolipram (0.1 mg/kg) and TDZD-8 (2.5 mg/kg) in sub-threshold doses corrected their Pre-Pulse Inhibition (PPI) deficit and hyperactivity, without any side effects at these doses. We have suggested that rolipram-induced increase of cAMP level might influence GSK-3 function and, hence the efficacy of TDZD-8. Our second goal was to estimate how DISC1-Q31L with reduced PDE4B activity, and therefore mimicking rolipram-induced conditions, could alter pharmacological response to TDZD-8, GSK-3 activity and its interaction with DISC1. DISC1-Q31L mutants showed increased sensitivity to GSK-3 inhibitor compare to DISC1-L100P mice. TDZD-8 (2.5 mg/kg) was able to correct PPI deficit, reduce immobility in the forced swim test (FST) and increased social motivation/novelty. In parallel, biochemical analysis revealed significantly reduced binding of GSK-3 to the mutated DISC1-Q31L and increased enzymatic activity of GSK-3. Taken together, genetic variations in DISC1 influence formation of biochemical complex with PDE4 and GSK-3 and strength the possibility of synergistic interactions between these proteins.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
39Hum. Genet. 2012 Jul 131: 1047-56
PMID22160351
TitleAssociation of PDE4B polymorphisms and schizophrenia in Northwestern Han Chinese.
AbstractThe phosphodiesterase 4B (PDE4B) is a candidate susceptibility gene for schizophrenia (SCZ), interacting with DISC1, a known genetic risk factor for SCZ. To examine if variants within PDE4B gene are associated with SCZ in Northwestern Han Chinese, and if these effects vary in gender-specific subgroup, we analyzed 20 SNPs, selected from previous studies and preliminary HapMap data analyses with minor allele frequency (MAF) ? 20%, in a cohort of 428 cases and 572 controls from genetically independent Northwestern Han Chinese. Single SNP association, haplotype association and sex-specific association analysis were performed. We found that rs472952 is significantly associated with SCZ and rs7537440 is associated with SCZ in females. Further analysis indicated that a haplotype block spanning PDE4B2 splice site is highly associated with SCZ and several haplotypes in this block have about twofold to threefold increase in cases. Our results provide further evidence that PDE4B may play important roles in the etiology of SCZ.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
40PLoS ONE 2012 -1 7: e32404
PMID22384243
TitleZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2.
AbstractZNF804a was identified by a genome-wide association study (GWAS) in which a single nucleotide polymorphism (SNP rs1344706) in ZNF804a reached genome-wide statistical significance for association with a combined diagnosis of schizophrenia (SZ) and bipolar disorder. Although the molecular function of ZNF804a is unknown, the amino acid sequence is predicted to contain a C2H2-type zinc-finger domain and suggests ZNF804a plays a role in DNA binding and transcription. Here, we confirm that ZNF804a directly contributes to transcriptional control by regulating the expression of several SZ associated genes and directly interacts with chromatin proximal to the promoter regions of PRSS16 and COMT, the two genes we find upregulated by ZNF804a. Using immunochemistry we establish that ZNF804a is localized to the nucleus of rat neural progenitor cells in culture and in vivo. We demonstrate that expression of ZNF804a results in a significant increase in transcript levels of PRSS16 and COMT, relative to GFP transfected controls, and a statistically significant decrease in transcript levels of PDE4B and DRD2. Furthermore, we show using chromatin immunoprecipitation assays (ChIP) that both epitope-tagged and endogenous ZNF804a directly interacts with the promoter regions of PRSS16 and COMT, suggesting a direct upregulation of transcription by ZNF804a on the expression of these genes. These results are the first to confirm that ZNF804a regulates transcription levels of four SZ associated genes, and binds to chromatin proximal to promoters of two SZ genes. These results suggest a model where ZNF804a may modulate a transcriptional network of SZ associated genes.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
41Mol. Psychiatry 2012 Nov 17: 1093-102
PMID21876540
TitleStatistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes.
AbstractAlthough schizophrenia is generally considered to occur as a consequence of multiple genes that interact with one another, very few methods have been developed to model epistasis. Phenotype definition has also been a major challenge for research on the genetics of schizophrenia. In this report, we use novel statistical techniques to address the high dimensionality of genomic data, and we apply a refinement in phenotype definition by basing it on the occurrence of brain changes during the early course of the illness, as measured by repeated magnetic resonance scans (i.e., an 'intermediate phenotype.') The method combines a machine-learning algorithm, the ensemble method using stochastic gradient boosting, with traditional general linear model statistics. We began with 14 genes that are relevant to schizophrenia, based on association studies or their role in neurodevelopment, and then used statistical techniques to reduce them to five genes and 17 single nucleotide polymorphisms (SNPs) that had a significant statistical interaction: five for PDE4B, four for RELN, four for ERBB4, three for DISC1 and one for NRG1. Five of the SNPs involved in these interactions replicate previous research in that, these five SNPs have previously been identified as schizophrenia vulnerability markers or implicate cognitive processes relevant to schizophrenia. This ability to replicate previous work suggests that our method has potential for detecting a meaningful epistatic relationship among the genes that influence brain abnormalities in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
42Cereb. Cortex 2013 Jul 23: 1643-54
PMID22693343
TitleConstellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia.
Abstractschizophrenia associates with impaired prefrontal cortical (PFC) function and alterations in cyclic AMP (cAMP) signaling pathways. These include genetic insults to disrupted-in-schizophrenia (DISC1) and phosphodiesterases (PDE4s) regulating cAMP hydrolysis, and increased dopamine D1 receptor (D1R) expression that elevates cAMP. We used immunoelectron microscopy to localize DISC1, PDE4A, PDE4B, and D1R in monkey PFC and to view spatial interactions with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that gate network inputs when opened by cAMP. Physiological interactions between PDE4s and HCN channels were tested in recordings of PFC neurons in monkeys performing a spatial working memory task. The study reveals a constellation of cAMP-related proteins (DISC1, PDE4A, and D1R) and HCN channels next to excitatory synapses and the spine neck in thin spines of superficial PFC, where working memory microcircuits interconnect and spine loss is most evident in schizophrenia. In contrast, channels in dendrites were distant from synapses and cAMP-related proteins, and were associated with endosomal trafficking. The data suggest that a cAMP signalplex is selectively positioned in the spines to gate PFC pyramidal cell microcircuits. Single-unit recordings confirmed physiological interactions between cAMP and HCN channels, consistent with gating actions. These data may explain why PFC networks are especially vulnerable to genetic insults that dysregulate cAMP signaling.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
43Sci Pharm 2014 Sep 82: 453-81
PMID25853062
TitleSelective Phosphodiesterase 4B Inhibitors: A Review.
AbstractPhosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
44Schizophr. Res. 2015 Oct 168: 402-10
PMID26164821
TitlePostnatal neurodevelopmental expression and glutamate-dependent regulation of the ZNF804A rodent homologue.
AbstractThe zinc finger protein ZNF804A rs1344706 variant is a replicated genome-wide significant risk variant for schizophrenia and bipolar disorder. While its association with altered brain structure and cognition in patients and healthy risk allele carriers is well documented, the characteristics and function of the gene in the brain remains poorly understood. Here, we used in situ hybridization to determine mRNA expression levels of the ZNF804A rodent homologue, Zfp804a, across multiple postnatal neurodevelopmental time points in the rat brain. We found changes in Zfp804a expression in the rat hippocampus, frontal cortex, and thalamus across postnatal neurodevelopment. Zfp804a mRNA peaked at postnatal day (P) 21 in hippocampal CA1 and DG regions and was highest in the lower cortical layers of frontal cortex at P1, possibly highlighting a role in developmental migration. Using immunofluorescence, we found that Zfp804a mRNA and ZFP804A co-localized with neurons and not astrocytes. In primary cultured cortical neurons, we found that Zfp804a expression was significantly increased when neurons were exposed to glutamate [20?M], but this increase was blocked by the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801. Expression of Comt, PDE4B, and Drd2, genes previously shown to be regulated by ZNF804A overexpression, was also significantly changed in an NMDA-dependent manner. Our results describe, for the first time, the unique postnatal neurodevelopmental expression of Zfp804a in the rodent brain and demonstrate that glutamate potentially plays an important role in the regulation of this psychiatric susceptibility gene. These are critical steps toward understanding the biological function of ZNF804A in the mammalian brain.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
45Gen. Physiol. Biophys. 2015 Jul 34: 277-84
PMID25926551
TitleAssociation analysis of PDE4B polymorphisms with schizophrenia and smooth pursuit eye movement abnormality in a Korean population.
Abstractschizophrenia is a debilitating mental disorder with a high heritability rate. Located on chromosome 1p31.3, the human cAMP-specific 3',5'-cyclic phosphodiesterase 4B (PDE4B) gene has been considered as an important candidate gene for the risk of schizophrenia. Several genetic association studies reported the association between PDE4B polymorphisms and the risk of schizophrenia in Caucasian, African American, Indian, and Japanese populations. The aim of this study is to examine the association of PDE4B variations with schizophrenia and smooth pursuit eye movement (SPEM) abnormality in a Korean population. A case-control association analysis was carried out by comparing the genotype distribution of eight PDE4B polymorphisms between 457 schizophrenia patients and 386 normal healthy subjects. Differences in the frequency distribution of PDE4B single nucleotide polymorphisms (SNPs) and haplotypes were analyzed by logistic regression analyses controlling for age as a covariate. Statistical analyses revealed nominal significant associations of rs1040716, rs472952, rs1321177, and rs2144719 with the risk of schizophrenia (p = 0.02~0.05). The rs11208756 polymorphism showed a nominal significant association with SPEM abnormality (p = 0.05). In a meta-analysis with Japanese and Korean populations, three SNPs (rs472952, rs1040716, and rs2180335) revealed significant associations with schizophrenia (meta-p value = 0.0038~0.019). Our results support previously reported association of PDE4B variations with schizophrenia in other populations. The findings in this study add a new evidence for the involvement of PDE4B gene in schizophrenia etiology.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
46Mol Neuropsychiatry 2015 Oct 1: 175-190
PMID27239468
TitleCopy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness.
AbstractRobust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
47Eur. J. Pharmacol. 2015 May 755: 58-65
PMID25769842
TitleVenlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice.
AbstractRecent evidence has identified disrupted in schizophrenia-1 (DISC1) as an important genetic risk factor for the development of many psychiatric disorders, including major depressive disorders. In addition, studies using animal models have demonstrated that chronic stress affects hippocampal structure and function. However, the functional effects of chronic stress on DISC1 remain unknown. Using a chronic mild stress (CMS) paradigm, we investigated the effects of CMS on depressive-like behaviors, hippocampal cell proliferation, and hippocampal protein expression of DISC1, phosphodiesterase 4B (PDE4B) and N-methyl-d-aspartate receptor 2B subunit (NMDA receptor 2B), which may be involved in the regulation of DISC1 and neurogenesis. We also examined the effects and possible mechanisms of the antidepressant venlafaxine in CMS mice. CMS increased the expression of DISC1 and PDE4B. Chronic treatment with venlafaxine blocked the increases in these proteins, and also reversed the CMS-induced decrease in neurogenesis and NMDA receptor 2B protein in the hippocampus. These results suggest that DISC1 may play an important role in the etiology of depression and in the action of antidepressants.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
48Neuropsychopharmacology 2016 Mar 41: 1080-92
PMID26272049
TitleSpecific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition.
AbstractCognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modeling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4B(Y358C) mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and ?-Arrestin in hippocampus and amygdala. In behavioral assays, PDE4B(Y358C) mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4B(Y358C) mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24?h, was decreased at 7 days in PDE4B(Y358C) mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signaling by PDE4B in a very late phase of consolidation. No effect of the PDE4B(Y358C) mutation was observed in the prepulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
49J. Clin. Lab. Anal. 2016 May 30: 196-9
PMID25546171
TitleExpression of Phosphodiesterase 4B cAMP-Specific Gene in Subjects With Cryptorchidism and Down's Syndrome.
AbstractCryptorchidism represents a risk factor for infertility and germ cell testicular neoplasia. An increased rate of cryptorchidism has been reported in subjects with Down's syndrome. Cyclic nucleotide phosphodiesterases (PDEs) are important messengers that regulate and mediate a number of cellular responses to extracellular signals, such as neurotransmitters and hormones. PDE4B, cAMP-specific (PDE4B) gene which maps to chromosome 1p31.3 appears to be involved in schizophrenia, chronic psychiatric illness, learning, memory, and mood disturbances. Expression of PDE4 enzymes have been studied in testes of cryptorchid rats. Expression of PDE4B protein examination showed marked degenerative changes in the epithelial lining of the seminiferous tubules. These findings led us to evaluate PDE4 mRNA expression in leukocytes of peripheral blood of five men with DS and cryptorchidism and eleven subjects with DS without cryptorchidism compared with healthy men (controls) by quantitative Real Time PCR (qRT-PCR). This study showed that the PDE4B gene was downexpressed in men with DS and cryptorchidism compared to normal controls and DS without cryptorchidism. A lower expression of the PDE4B gene may be involved in the neurological abnormalities in subjects with Down's syndrome. Moreover, PDE4B gene may be involved in the testicular abnormalities of men with DS and cryptorchidism.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
50Mol. Divers. 2016 Feb 20: 77-92
PMID26290462
TitleNew insights into PDE4B inhibitor selectivity: CoMFA analyses and molecular docking studies.
AbstractPDE4 inhibitors have been largely studied because of their promising therapeutic effects concerning inflammation and neurodegenerative dysfunctions, such as depression, schizophrenia and Alzheimer's diseases. In this context, the PDE4B isoform proved to be particularly involved in the activation of inflammatory responses, while the PDE4D subfamily is more associated with neuropathologies. The clinical use of PDE4 inhibitors was restricted by the presence of prominent side effects probably due to their non-specific action across the different isoforms. Therefore, this work deals with the development of 3D-QSAR models, supported by molecular docking studies, to identify the key requirements underlying selective PDE4B or PDE4D inhibition. The results highlighted the ligand-based approach as a promising tool to guide the rational design of novel PDE4 inhibitors endowed with high affinity and selectivity profiles. The alignment of compound 1-85 and the model A statistical results are depicted.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
51PLoS ONE 2016 -1 11: e0147092
PMID26756575
TitleAssociation of PDE4B Polymorphisms with Susceptibility to Schizophrenia: A Meta-Analysis of Case-Control Studies.
AbstractThe PDE4B single nucleotide polymorphisms (SNPs) have been reported to be associated with schizophrenia risk. However, current findings are ambiguous or even conflicting. To better facilitate the understanding the genetic role played by PDE4B in susceptibility to schizophrenia, we collected currently available data and conducted this meta-analysis.
A comprehensive electronic literature searching of PubMed, Embase, Web of Science and Cochrane Library was performed. The association between PDE4B SNPs and schizophrenia was evaluated by odds ratios (ORs) and 95% confidence intervals (CIs) under allelic, dominant and recessive genetic models. The random effects model was utilized when high between-study heterogeneity (I2 > 50%) existed, otherwise the fixed effects model was used.
Five studies comprising 2376 schizophrenia patients and 3093 controls were finally included for meta-analysis. The rs1040716 was statistically significantly associated with schizophrenia risk in Asian and Caucasian populations under dominant model (OR = 0.87, 95% CI: 0.76-0.99, P = 0.04). The rs2180335 was significantly related with schizophrenia risk in Asian populations under allelic (OR = 0.82, 95% CI: 0.72-0.93, P = 0.003) and dominant (OR = 0.75, 95% CI: 0.64-0.88, P < 0.001) models. A significant association was also observed between rs4320761 and schizophrenia in Asian populations under allelic model (OR = 0.87, 95% CI: 0.75-1.00, P = 0.048). In addition, a strong association tendency was found between rs6588190 and schizophrenia in Asian populations under allelic model (OR = 0.87, 95% CI: 0.76-1.00, P = 0.055).
This meta-analysis suggests that PDE4B SNPs are genetically associated with susceptibility to schizophrenia. However, due to limited sample size, more large-scale, multi-racial association studies are needed to further clarify the genetic association between various PDE4B variants and schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics