1Mol. Psychiatry 2005 Mar 10: 309-22
PMID15303102
TitleTranscriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.
AbstractMajor depressive disorder is one of the most common and devastating psychiatric disorders. To identify candidate mechanisms for major depressive disorder, we compared gene expression in the temporal cortex from 12 patients with major depressive disorder and 14 matched controls using Affymetrix HgU95A microarrays. Significant expression changes were revealed in families of genes involved in neurodevelopment, signal transduction and cell communication. Among these, the expression of 17 genes related to oligodendrocyte function was significantly (P < 0.05, fold change > 1.4) decreased in patients with major depressive disorder. Eight of these 17 genes encode structural components of myelin (CNP, MAG, MAL, MOG, MOBP, PMP22, PLLP, PLP1). Five other genes encode enzymes involved in the synthesis of myelin constituents (ASPA, UGT8), or are essential in regulation of myelin formation (ENPP2, EDG2, TF, KLK6). One gene, that is, SOX10, encodes a transcription factor regulating other myelination-related genes. OLIG2 is a transcription factor present exclusively in oligodendrocytes and oligodendrocyte precursors. Another gene, ERBB3, is involved in oligodendrocyte differentiation. In addition to myelination-related genes, there were significant changes in multiple genes involved in axonal growth/synaptic function. These findings suggest that major depressive disorder may be associated with changes in cell communication and signal transduction mechanisms that contribute to abnormalities in oligodendroglia and synaptic function. Taken together with other studies, these findings indicate that major depressive disorder may share common oligodendroglial abnormalities with schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia
2Synapse 2008 Jan 62: 1-7
PMID17948890
TitleEffect of MK-801 on gene expressions in the amygdala of rats.
AbstractRodents treated with N-methyl-D-aspartate (NMDA) antagonists have been thought to be an animal model of schizophrenia. In this study, we examined gene expression in the amygdala of rats chronically treated with MK-801, as well as behavioral changes, such as social behavior, in these animals. The social interaction test, a measure of social behavior, and locomotor activity was performed in male Wistar rats injected with MK-801 (0.13 mg/kg i.p.) or saline for 14 days. Changes in mRNA levels were analyzed using a GeneChip microarray system. Real-time quantitative PCR (RT-qPCR) assay was subsequently conducted to confirm the results of the microarray analysis. MK-801 decreased social interaction and increased locomotor activity in rats, consistent with previous reports. We found 23 downregulated genes and 16 upregulated genes, with the gene encoding arginine-vasopressin (AVP) being most downregulated, and that for transthyretin (Ttr) most upregulated. mRNA levels, quantified by RT-qPCR assay, were altered for genes related to neuropeptides (AVP, Sstr2), the arachidonic cascade (Ptgds), myelination (Mobp, ENPP2), neurotrophic factors (Igfbp2), and hormonal milieu (Ttr). Downregulation of the AVP gene in the amygdala of MK-801-treated rats may provide a basis for the ability of AVP-analogues to ameliorate the behavioral disturbances caused by blockade of the NMDA receptor. The results of this study provide an insight into the neural substrates responsible for the generation of psychotic symptoms.
SCZ Keywordsschizophrenia
3Pharmacogenomics 2011 Feb 12: 171-84
PMID21332311
TitleGenome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI antidepressant response biomarker.
AbstractSelective serotonin reuptake inhibitors (SSRIs) are the most commonly used class of antidepressants for treating major depression. However, approximately 30% of patients do not respond sufficiently to first-line antidepressant drug treatment and require alternative therapeutics. Genome-wide studies searching for SSRI response DNA biomarkers or studies of candidate serotonin-related genes so far have given inconclusive or contradictory results. Here, we present an alternative transcriptome-based genome-wide approach for searching antidepressant drug-response biomarkers by using drug-effect phenotypes in human lymphoblastoid cell lines (LCLs).
We screened 80 LCLs from healthy adult female individuals for growth inhibition by paroxetine. A total of 14 LCLs with reproducible high and low sensitivities to paroxetine (seven from each phenotypic group) were chosen for genome-wide expression profiling with commercial microarrays.
The most notable genome-wide transcriptome difference between LCLs displaying high versus low paroxetine sensitivities was a 6.3-fold lower (p = 0.0000256) basal expression of CHL1, a gene coding for a neuronal cell adhesion protein implicated in correct thalamocortical circuitry, schizophrenia and autism. The microarray findings were confirmed by real-time PCR (36-fold lower CHL1 expression levels in the high paroxetine sensitivity group). Several additional genes implicated in synaptogenesis or in psychiatric disorders, including ARRB1, CCL5, DDX60, DDX60L, ENDOD1, ENPP2, FLT1, GABRA4, GAP43, MCTP2 and SPRY2, also differed by more than 1.5-fold and a p-value of less than 0.005 between the two paroxetine sensitivity groups, as confirmed by real-time PCR experiments.
Genome-wide transcriptional profiling of in vitro phenotyped LCLs identified CHL1 and additional genes implicated in synaptogenesis and brain circuitry as putative SSRI response biomarkers. This method might be used as a preliminary tool for searching for potential depression treatment biomarkers.
SCZ Keywordsschizophrenia