1Neuropsychopharmacology 2013 Nov 38: 2532-44
PMID23942359
TitleA combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology.
AbstractCurrent schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca(2+) signaling (Ca(2+)/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca(2+) regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ.
SCZ Keywordsschizophrenia
2J Stud Alcohol Drugs 2016 Mar 77: 220-6
PMID26997180
TitleDISC1 as a Possible Genetic Contribution to Opioid Dependence in a Polish Sample.
AbstractDisrupted-in-schizophrenia 1 (DISC1) has been linked to vulnerability to a variety of psychiatric disorders and neuropsychiatric phenotypes. However, DISC1 has not been frequently examined as a potential risk factor for substance dependence. An association between opioid dependence and DISC1 rs2738888 polymorphism has been recently reported. In addition, opioid dependence was associated with rs6419156 located close to the protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene. The aim of the present study was to examine the associations between opioid dependence with rs2738888 and rs6419156 in an independent sample.
The selected polymorphisms were genotyped in a sample of 392 individuals (69.9% male) diagnosed as alcohol- and/or opioid-dependent. A control group (n = 257; 67.7% male) was derived from the Polish National Health Survey (N = 14,350).
The frequency of rs2738888 C allele was higher in controls than in opioid-dependent cases (OR = 0.65, p = .045). Phenotypic-oriented analyses performed within opioid-dependent individuals revealed the association between lifetime suicide attempt and rs2738888. The C allele of rs2738888 had a protective effect on lifetime suicide attempt in opioid-dependent patients (OR = 0.25, p = .003). Rs6419156 was not associated with substance dependence in the examined sample.
The DISC1 may play an important role in vulnerability to opioid dependence. In addition, DISC1 may also be a genetic risk factor for suicide attempt in opioid-dependent individuals.
SCZ Keywordsschizophrenia