1Mol. Psychiatry 2011 Mar 16: 321-32
PMID20195266
TitleGenomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs.
AbstractUnderstanding individual differences in the susceptibility to metabolic side effects as a response to antipsychotic therapy is essential to optimize the treatment of schizophrenia. Here, we perform genomewide association studies (GWAS) to search for genetic variation affecting the susceptibility to metabolic side effects. The analysis sample consisted of 738 schizophrenia patients, successfully genotyped for 492K single nucleotide polymorphisms (SNPs), from the genomic subsample of the Clinical Antipsychotic Trial of Intervention Effectiveness study. Outcomes included 12 indicators of metabolic side effects, quantifying antipsychotic-induced change in weight, blood lipids, glucose and hemoglobin A1c, blood pressure and heart rate. Our criterion for genomewide significance was a pre-specified threshold that ensures, on average, only 10% of the significant findings are false discoveries. A total of 21 SNPs satisfied this criterion. The top finding indicated that a SNP in Meis homeobox 2 (MEIS2) mediated the effects of risperidone on hip circumference (q=0.004). The same SNP was also found to mediate risperidone's effect on waist circumference (q=0.055). Genomewide significant finding were also found for SNPs in PRKAR2B, GPR98, FHOD3, RNF144A, ASTN2, SOX5 and ATF7IP2, as well as in several intergenic markers. PRKAR2B and MEIS2 both have previous research indicating metabolic involvement, and PRKAR2B has previously been shown to mediate antipsychotic response. Although our findings require replication and functional validation, this study shows the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antipsychotic medication.
SCZ Keywordsschizophrenia
2Hum Psychopharmacol 2014 Jul 29: 330-5
PMID24737441
TitleProtein kinase cAMP-dependent regulatory type II beta (PRKAR2B) gene variants in antipsychotic-induced weight gain.
AbstractAntipsychotics are effective in treating schizophrenia symptoms. However, the use of clozapine and olanzapine in particular are associated with significant weight gain. Mouse and human studies suggest that the protein kinase cAMP-dependent regulatory type II beta (PRKAR2B) gene may be involved in energy metabolism, and there is evidence that it is associated with clozapine's effects on triglyceride levels. We aimed at assessing PRKAR2B's role in antipsychotic-induced weight gain in schizophrenia patients.
DNA samples from adult schizophrenia or schizoaffective disorder patients of mixed ancestry were genotyped, and weight gain was assessed. We analyzed 16 tag single-nucleotide polymorphisms across the PRKAR2B gene in a Caucasian subset treated either with clozapine or olanzapine (N?=?99). Linear regression based on an additive model was performed with the inclusion of relevant covariates.
Normalized per cent weight change was analyzed, revealing that patients with the minor allele at rs9656135 had a mean weight increase of 4.1%, whereas patients without this allele had an increase of 3.4%. This association is not significant after correcting for multiple testing.
Because of limited power, PRKAR2B's role in antipsychotic-induced weight gain is unclear, but biological evidence suggests that PRKAR2B may be involved. Further research in larger sample sizes is warranted.
SCZ Keywordsschizophrenia