1Anal. Biochem. 2009 Aug 391: 91-7
PMID19464249
TitleDetection of stable reference genes for real-time PCR analysis in schizophrenia and bipolar disorder.
AbstractGene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann's area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.
SCZ Keywordsschizophrenia, schizophrenics
2Anal. Biochem. 2009 Aug 391: 91-7
PMID19464249
TitleDetection of stable reference genes for real-time PCR analysis in schizophrenia and bipolar disorder.
AbstractGene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann's area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.
SCZ Keywordsschizophrenia, schizophrenics
3Aust N Z J Psychiatry 2010 Jan 44: 59-70
PMID20073568
TitleSelection of reference gene expression in a schizophrenia brain cohort.
AbstractIn order to conduct postmortem human brain research into the neuropatho-logical basis of schizophrenia, it is critical to establish cohorts that are well-characterized and well-matched. The aim of the present study was therefore to determine if specimen characteristics including: diagnosis, age, postmortem interval (PMI), brain acidity (pH), and/or the agonal state of the subject at death related to RNA quality, and to determine the most appropriate reference gene mRNAs.
A matched cohort was selected of 74 subjects (schizophrenia/schizoaffective disorder, n = 37; controls, n = 37). Middle frontal gyrus tissue was pulverized, tissue pH was measured, RNA isolated for cDNA from each case, and RNA integrity number (RIN) measurements were assessed. Using quantitative reverse transcription-polymerase chain reaction, nine housekeeper genes were measured and a geomean calculated per case in each diagnostic group.
The RINs were very good (mean = 7.3) and all nine housekeeper control genes were significantly correlated with RIN. Seven of nine housekeeper genes were also correlated with pH; two clinical variables, agonal state and duration of illness, did have an effect on some control mRNAs. No major impact of PMI or freezer time on housekeeper mRNAs was detected. The results show that people with schizophrenia had significantly less PPIA and SDHA mRNA and tended to have less GUSB and B2M mRNA, suggesting that these control genes may not be good candidates for normalization.
In the present cohort <10% variability in RINs was detected and the diagnostic groups were well matched overall. The cohort was adequately powered (0.80-0.90) to detect mRNA differences (25%) due to disease. The study suggests that multiple factors should be considered in mRNA expression studies of human brain tissues. When schizophrenia cases are adequately matched to control cases subtle differences in gene expression can be reliably detected.
SCZ Keywordsschizophrenia, schizophrenics