1PLoS Med. 2006 Nov 3: e428
PMID17090210
TitleDisease biomarkers in cerebrospinal fluid of patients with first-onset psychosis.
AbstractPsychosis is a severe mental condition that is characterized by a loss of contact with reality and is typically associated with hallucinations and delusional beliefs. There are numerous psychiatric conditions that present with psychotic symptoms, most importantly schizophrenia, bipolar affective disorder, and some forms of severe depression referred to as psychotic depression. The pathological mechanisms resulting in psychotic symptoms are not understood, nor is it understood whether the various psychotic illnesses are the result of similar biochemical disturbances. The identification of biological markers (so-called biomarkers) of psychosis is a fundamental step towards a better understanding of the pathogenesis of psychosis and holds the potential for more objective testing methods.
Surface-enhanced laser desorption ionization mass spectrometry was employed to profile proteins and peptides in a total of 179 cerebrospinal fluid samples (58 schizophrenia patients, 16 patients with depression, five patients with obsessive-compulsive disorder, ten patients with Alzheimer disease, and 90 controls). Our results show a highly significant differential distribution of samples from healthy volunteers away from drug-naïve patients with first-onset paranoid schizophrenia. The key alterations were the up-regulation of a 40-amino acid VGF-derived peptide, the down-regulation of transthyretin at approximately 4 kDa, and a peptide cluster at approximately 6,800-7,300 Da (which is likely to be influenced by the doubly charged ions of the transthyretin protein cluster). These schizophrenia-specific protein/peptide changes were replicated in an independent sample set. Both experiments achieved a specificity of 95% and a sensitivity of 80% or 88% in the initial study and in a subsequent validation study, respectively.
Our results suggest that the application of modern proteomics techniques, particularly mass spectrometric approaches, holds the potential to advance the understanding of the biochemical basis of psychiatric disorders and may in turn allow for the development of diagnostics and improved therapeutics. Further studies are required to validate the clinical effectiveness and disease specificity of the identified biomarkers.
SCZ Keywordsschizophrenia
2PLoS ONE 2007 -1 2: e756
PMID17712404
TitleCSF metabolic and proteomic profiles in patients prodromal for psychosis.
AbstractThe initial prodromal state of psychosis (IPS) is defined as an early disease stage prior to the onset of overt psychosis characterized by sub-threshold or more unspecific psychiatric symptoms. Little is known regarding the biochemical changes during this period.
We investigated the metabolic/proteomic profiles of cerebrospinal fluid (CSF) of first-onset drug naïve paranoid schizophrenia patients (n = 54) and individuals presenting with initial prodromal symptoms (n = 24), alongside healthy volunteers (n = 70) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and surface enhanced laser desorption ionization (SELDI) mass spectrometry, respectively. Partial least square discriminant analysis (PLS-DA) showed that 36%/29% of IPS patients displayed proteomic/metabolic profiles characteristic of first-onset, drug naïve schizophrenia, i.e., changes in levels of glucose and lactate as well as changes in a VGF-derived peptide (VGF23-62) and transthyretin protein concentrations. However, only 29% (n = 7) of the investigated IPS patients (who to date have been followed up for up to three years) have so far received a diagnosis of schizophrenia. The presence of biochemical alterations in the IPS group did not correlate with the risk to develop schizophrenia.
Our results imply that schizophrenia-related biochemical disease processes can be traced in CSF of prodromal patients. However, the biochemical disturbances identified in IPS patients, at least when measured at a single time point, may not be sufficient to predict clinical outcome.
SCZ Keywordsschizophrenia
3Mol. Psychiatry 2008 Jul 13: 673-84
PMID17684500
TitleReplication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families.
Abstractschizophrenia is a common and complex mental disorder. Hereditary factors are important for its etiology, but despite linkage signals reported to several chromosomal regions in different populations, final identification of predisposing genes has remained a challenge. Utilizing a large family-based schizophrenia study sample from Finland, we have identified several linked loci: 1q32.2-q42, 2q, 4q31, 5q and 7q22. In this study, an independent sample of 352 nuclear schizophrenia families (n=1626) allowed replication of linkage on 7q21-32. In a sample of 245 nuclear families (n=1074) originating from the same geographical region as the families revealing the linkage, SNP and microsatellite association analyses of the four regional candidate genes, GRM3, RELN, SEMA3A and VGF, revealed no significant association to the clinical diagnosis of schizophrenia. Instead, quantifiable trait component analyses with neuropsychological endophenotypes available from 186 nuclear families (n=861) of the sample showed significant association to RELN variants for traits related to verbal (P=0.000003) and visual working memory (P=0.002), memory (P=0.002) and executive functioning (P=0.002). Trait-associated allele-positive subjects scored lower in the tests measuring working memory (P=0.0004-0.0000000004), memory (P=0.02-0.0001) and executive functioning (P=0.001). Our findings suggest that allelic variants of RELN contribute to the endophenotypes of schizophrenia.
SCZ Keywordsschizophrenia
4Neuropsychopharmacology 2009 Jan 34: 18-54
PMID18923405
TitleTarget identification for CNS diseases by transcriptional profiling.
AbstractGene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
SCZ Keywordsschizophrenia
5Neuroscience 2010 Sep 170: 289-97
PMID20600637
TitleGranins as disease-biomarkers: translational potential for psychiatric and neurological disorders.
AbstractThe identification of biomarkers represents a fundamental medical advance that can lead to an improved understanding of disease pathogenesis, and holds the potential to define surrogate diagnostic and prognostic endpoints. Because of the inherent difficulties in assessing brain function in patients and objectively identifying neurological and cognitive/emotional symptoms, future application of biomarkers to neurological and psychiatric disorders is extremely desirable. This article discusses the biomarker potential of the granin family, a group of acidic proteins present in the secretory granules of a wide variety of endocrine, neuronal and neuroendocrine cells: chromogranin A (CgA), CgB, Secretogranin II (SgII), SgIII, HISL-19 antigen, 7B2, NESP55, VGF and ProSAAS. Their relative abundance, functional significance, and secretion into the cerebrospinal fluid (CSF), saliva, and the general circulation have made granins tractable targets as biomarkers for many diseases of neuronal and endocrine origin, recently impacting diagnosis of a number of neurological and psychiatric disorders including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, frontotemporal dementia, and schizophrenia. Although research has not yet validated the clinical utility of granins as surrogate endpoints for the progression or treatment of neurological or psychiatric disease, a growing body of experimental evidence indicates that the use of granins as biomarkers might be of great potential clinical interest. Advances that further elucidate the mechanism(s) of action of granins, coupled with improvements in biomarker technology and direct clinical application, should increase the translational effectiveness of this family of proteins in disease diagnosis and drug discovery.
SCZ Keywordsschizophrenia
6Mol. Psychiatry 2012 Mar 17: 267-79
PMID21709683
TitleTranscriptional regulation of neurodevelopmental and metabolic pathways by NPAS3.
AbstractThe basic helix-loop-helix PAS (Per, Arnt, Sim) domain transcription factor gene NPAS3 is a replicated genetic risk factor for psychiatric disorders. A knockout (KO) mouse model exhibits behavioral and adult neurogenesis deficits consistent with human illness. To define the location and mechanism of NPAS3 etiopathology, we combined immunofluorescent, transcriptomic and metabonomic approaches. Intense Npas3 immunoreactivity was observed in the hippocampal subgranular zone-the site of adult neurogenesis--but was restricted to maturing, rather than proliferating, neuronal precursor cells. Microarray analysis of a HEK293 cell line over-expressing NPAS3 showed that transcriptional targets varied according to circadian rhythm context and C-terminal deletion. The most highly up-regulated NPAS3 target gene, VGF, encodes secretory peptides with established roles in neurogenesis, depression and schizophrenia. VGF was just one of many NPAS3 target genes also regulated by the SOX family of transcription factors, suggesting an overlap in neurodevelopmental function. The parallel repression of multiple glycolysis genes by NPAS3 reveals a second role in the regulation of glucose metabolism. Comparison of wild-type and Npas3 KO metabolite composition using high-resolution mass spectrometry confirmed these transcriptional findings. KO brain tissue contained significantly altered levels of NAD(+), glycolysis metabolites (such as dihydroxyacetone phosphate and fructose-1,6-bisphosphate), pentose phosphate pathway components and Kreb's cycle intermediates (succinate and ?-ketoglutarate). The dual neurodevelopmental and metabolic aspects of NPAS3 activity described here increase our understanding of mental illness etiology, and may provide a mechanism for innate and medication-induced susceptibility to diabetes commonly reported in psychiatric patients.
SCZ Keywordsschizophrenia
7Eur Arch Psychiatry Clin Neurosci 2012 Aug 262: 365-74
PMID22167530
TitleReduced density of hypothalamic VGF-immunoreactive neurons in schizophrenia: a potential link to impaired growth factor signaling and energy homeostasis.
AbstractProtein expression of VGF (nonacronymic) is induced by nerve/brain-derived growth factor, neurotrophin 3, and insulin. VGF is synthesized by neurons in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. After enzymatic processing, smaller VGF-derived peptides are secreted into the cerebrospinal fluid (CSF) or blood. These peptides play important roles by improving synaptic plasticity, neurogenesis, and energy homeostasis, which are impaired in schizophrenia. Based on previous observations of neuroendocrine and hypothalamic deficits in schizophrenia and to determine whether increased levels of the VGF fragment 23-62 in CSF, which have been described in a recent study, were related to changes in hypothalamic VGF expression, an immunohistochemical study was performed in 20 patients with schizophrenia and 19 matched control subjects. N- (D-20) and C-terminal (R-15) VGF antibodies yielded similar results and immunolabeled a vast majority of PVN and SON neurons. Additionally, D20-VGF immunohistochemistry revealed immunostained fibers in the pituitary stalk and neurohypophysis that ended at vessel walls, suggesting axonal transport and VGF secretion. The cell density of D20-VGF-immunoreactive neurons was reduced in the left PVN (P = 0.002) and SON (P = 0.008) of patients with schizophrenia. This study provides the first evidence for diminished hypothalamic VGF levels in schizophrenia, which might suggest increased protein secretion. Our finding was particularly significant in subjects without metabolic syndrome (patients with a body mass index ?28.7 kg/m(2)). In conclusion, apart from beneficial effects on synaptic plasticity and neurogenesis, VGF may be linked to schizophrenia-related alterations in energy homeostasis.
SCZ Keywordsschizophrenia
8Clin Ter 2012 Jul 163: 293-7
PMID23007812
Title[Negative dimension, social cognition, insight and subjective experience in Schizophrenia].
AbstractInvestigation on subjective symptoms in schizophrenia has traditionally been limited to delusions and hallucinations, not considering the persistence of many others disorders and difficulties as residual negative symptoms and cognitive deficits that instead greatly affect the clinical and functional prognosis. The aim of the study is to investigate the differences between the subjective experience of the patient and the objective assessment regarding the negative dimension symptoms in patients with schizophrenia.
We evaluated 58 patients with a diagnosis of schizophrenia consecutively admitted at the L'Aquila Psychiatric inpatient ward (Italy) from April to September 2010; all of them were taking psychopharmacological treatment. The instruments used were: the PANSS for assessment of clinical symptoms and VGF for the assessment of the global functioning, the SENS, the Insight Self-Report Scale and the Scale Geople to investigate respectively the negative dimension subjectively perceived, the insight and the social cognition.
The analysis of SENS showed a score of 95.43 (SD ± 9.1) in the awareness, pointing to a negative perception of the experience medium to high. The study of Social Cognition has shown the presence of a statistically significant discrepancy between the two evaluations (p <0.01). The inferential analysis between SENS and PANSS, reported significant correlations between the PANSS negative symptoms of the item of inability to feel the SENS (p <0.015). Finally, a positive correlation was found between the total score of SENS with GFR (p <0.02).
The knowledge of the subjective experiences of patients with schizophrenia can be difficult because of social withdrawal and resistance to treatment, due mostly to the subjective suffering that is not adequately understood. The results, in line with the recent literature, have shown that the perception of negative symptoms does not always find a parallel in the clinical assessment and how this is a significant correlation with the global functioning. In this perspective, it is therefore necessary to consider the point of view of the patient in order to predict the adherence to the treatment and the global functioning outcome.
SCZ Keywordsschizophrenia
9Hum. Mol. Genet. 2014 Nov 23: 5859-65
PMID24934694
TitleNeuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1.
AbstractIn a large Scottish pedigree, disruption of the gene coding for DISC1 clearly segregates with major depression, schizophrenia and related mental conditions. Thus, study of DISC1 may provide a clue to understand the biology of major mental illness. A neuropeptide precursor VGF has potent antidepressant effects and has been reportedly associated with bipolar disorder. Here we show that DISC1 knockdown leads to a reduction of VGF, in neurons. VGF is also downregulated in the cortices from sporadic cases with major mental disease. A positive correlation of VGF single-nucleotide polymorphisms (SNPs) with social anhedonia was also observed. We now propose that VGF participates in a common pathophysiology of major mental disease.
SCZ Keywordsschizophrenia
10J. Neurochem. 2015 Nov 135: 598-605
PMID26212236
TitleDISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway.
AbstractDisrupted in schizophrenia (DISC1) is a risk factor for chronic mental disease. In a previous proteomic study, we reported that knocking down DISC1 results in a sharp decrease in the levels of the neuropeptide precursor VGF (non-acronymic) and leads to reduced activation of cAMP response element-binding protein (CREB) and protein kinase B (AKT) in neurons. The main objective of this study is to complete the characterization of the route, or routes, involving AKT and CREB through which DISC1 modulates the expression of VGF. For that we explored known players upstream of AKT and the DISC1 binding partners glycogen synthase kinase-3 beta and Phosphodiesterase-4, which might in turn reach out to CREB in murine neuron primary culture. We found that DISC1 modulates the activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, pharmacological inhibition of PI3K resulted in decreased expression of VGF. All this suggests that the PI3K/AKT pathway plays a role in mediating the effects of DISC1 silencing on VGF expression. Given the important roles of VGF in mental disease, and its drugability, the DISC1-VGF connection might prove to be important for efforts to develop new therapies for these diseases.
SCZ Keywordsschizophrenia