1Hum. Mol. Genet. 2008 Apr 17: 1156-68
PMID18184693
TitleDysregulation of miRNA 181b in the temporal cortex in schizophrenia.
AbstractAnalysis of global microRNA (miRNA) expression in postmortem cortical grey matter from the superior temporal gyrus, revealed significant up-regulation of miR-181b expression in schizophrenia. This finding was supported by quantitative real-time RT-PCR analysis of miRNA expression in a cohort of 21 matched pairs of schizophrenia and non-psychiatric controls. The implications of this finding are substantial, as this miRNA is predicted to regulate many target genes with potential significance to the development of schizophrenia. They include the calcium sensor gene visinin-like 1 (VSNL1) and the ionotropic AMPA glutamate receptor subunit (GRIA2), which were found to be down-regulated in the same cortical tissue from the schizophrenia group. Both of these genes were also suppressed in miR-181b transfected cells and shown to contain functional miR-181b miRNA recognition elements by reporter gene assay. This study suggests altered miRNA levels could be a significant factor in the dysregulation of cortical gene expression in schizophrenia.
SCZ Keywordsschizophrenia
2Transl Psychiatry 2011 -1 1: e22
PMID22832524
TitleAssociation of VSNL1 with schizophrenia, frontal cortical function, and biological significance for its gene product as a modulator of cAMP levels and neuronal morphology.
AbstractWe report an association of single-nucleotide polymorphisms (SNPs) for the VSNL1 gene (visinin-like 1) with schizophrenia and frontal cortical function in a sample of patients with Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) diagnoses of schizophrenia, compared with healthy controls. Moreover, VSNL1 SNPs were associated with performance in the Wisconsin Card Sorting Test, a measure for the assessment of frontal cortical function. The VSNL1 gene product, Visinin-like-protein-1 (VILIP-1), is a member of the neuronal EF-hand Ca(2+)-sensor protein family. Previously, VILIP-1 mRNA and protein expression were shown to be altered in animal models and in schizophrenia patients. VILIP-1 influences cytosolic cyclic adenosine mono phosphate (cAMP) levels, cell migration, exocytotic processes and differentiation in the periphery. This raises the question, whether, similar to other potential schizophrenia susceptibility genes such as Disc1, PDE4B and Akt, VSNL1 may affect cAMP signaling and neurite outgrowth in neurons. In dissociated rat hippocampal neurons, VILIP-1 small interfering RNA knockdown decreased cAMP levels and reduced dendrite branching, compared with control-transfected cells. In contrast, VILIP-1 overexpression had the opposite effect. Similar results have been obtained in the human dopaminergic neuronal cell line SH-SY5Y, where the effect on neurite branching and length was attenuated by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and the protein kinase A inhibitor KT5720. These results show that the association of VSNL1 SNPs with the disease and cognitive impairments, together with previously observed pathological changes in VILIP-1 protein expression, possibly occurring during brain development, may contribute to the morphological and functional deficits observed in schizophrenia.
SCZ Keywordsschizophrenia