1Neurosci. Res. 2008 Feb 60: 184-91
PMID18068248
TitleGene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains.
AbstractGenome-wide gene expression analysis using DNA microarray has a great advantage to identify the genes or specific molecular cascades involved in mental diseases, including major depression and suicide. In the present study, we conducted DNA microarray analysis of major depression using postmortem prefrontal cortices. The gene expression patterns were compared between the controls and subjects with major depression. As a result, 99 genes were listed as the differentially expressed genes in major depression, of which several genes such as FGFR1, NCAM1, and CAMK2A were of interest. Gene ontology analysis suggested an overrepresentation of genes implicated in the downregulation or inhibition of cell proliferation. The present results may support the hypothesis that major depression is associated with impaired cellular proliferation and plasticity. Comparison between the controls and suicide victims with major depression, bipolar disorder, or schizophrenia was also conducted in the present study. Two genes, CAD and ATP1A3, were differentially expressed in the three comparisons in the same direction. Interestingly, these two genes were also included in the differentially expressed 99 genes in major depression. It may be worth investigating the genes in relation to suicide or major depression.
SCZ Keywordsschizophrenia
2Schizophr Bull 2012 May 38: 579-91
PMID21084551
TitleNMDA receptor hypofunction induces dysfunctions of energy metabolism and semaphorin signaling in rats: a synaptic proteome study.
AbstractThere is considerable evidence to suggest that aberrations of synapse connectivity contribute to the pathophysiology of schizophrenia and that N-methyl-D-aspartate (NMDA) receptor-mediated glutamate transmission is especially important. Administration of MK-801 ([+]-5-methyl-10, 11-dihydro-5H-dibenzo-[a, d]-cycloheptene-5, 10-iminehydrogenmaleate) induces hypofunction of NMDA receptors in rats, which are widely used as a model for schizophrenia. We investigated synaptosomal proteome expression profiling of the cerebral cortex of MK-801-treated Sprague-Dawley rats using the 2-dimensional difference gel electrophoresis method, and 49 differentially expression proteins were successfully identified using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight mass spectrometry. We carried out a literature search for further confirmation of subsynaptic locations and to explore the relevance to the diseases of differentially expressed proteins. Ingenuity Pathways Analysis (IPA) was used to further examine the underlying relationship between the changed proteins. The network encompassing "cell morphology, cell-to-cell signaling and interaction, nervous system development and function" was found to be significantly altered in the MK-801-treated rats. "Energy metabolism" and "semaphorin signaling in neurons" are the most significant IPA canonical pathways to be affected by MK-801 treatment. Using western blots, we confirmed the differential expression of CAMK2A, Crmp2, Crmp5, Dnm1, and Ndufs3 in both synaptosome proteins and total proteins in the cerebral cortex of the rats. Our study identified the change and/or response of the central nervous transmission system under the stress of NMDA hypofunction, underlining the importance of the synaptic function in schizophrenia.
SCZ Keywordsschizophrenia