1Schizophr. Res. 2010 Jul 120: 150-8
TitleGene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia.
AbstractDeficits in the expression of oligodendrocyte (Ol) and myelin genes have been described in numerous brain regions in schizophrenia (SZ) in association with abnormalities of cell cycle markers. We have previously reported a SZ-associated decrease in the expression of genes expressed after, but not prior to, the terminal differentiation of Ols in the posterior limb of the internal capsule (ICp). This pattern of deficits could reflect a failure of Ol precursors to exit the cell cycle and differentiate to meet the demands imposed by the high rate of apoptosis among myelinating Ols. Here we explore this hypothesis using quantitative real time PCR to examine the mRNA expression of additional genes in the ICp of the previously examined sample of 14 subjects with SZ and 15 normal controls (NCs). The genes examined in the present study were chosen because they are associated with particular phases of the cell cycle (CCND1, CCND2, p21(Cip1), p27(Kip1), and p57(Kip2)), with DNA replication and repair (PCNA), apoptosis (CASP3), or the Notch signaling pathway (JAG1, HES1, HES5, andDTX1). The Notch pathway influences whether Ol precursors continue to proliferate or exit the cell cycle. We also determined the densities of Ols in the ICp. Genes associated with maintenance of the cell cycle tended to exhibit increased expression levels in SZ relative to NCs and to be negatively correlated with the expression levels of the previously assessed mature Ol genes. In contrast, genes associated with cell cycle arrest tended to show the opposite pattern (decreased expression in SZ and positive correlations with mature Ol genes). CASP3 and PCNA expression levels were significantly decreased in SZ and positively correlated with mature Ol genes, suggesting that myelinating Ols may turnover more rapidly in normal controls than in subjects with SZ. JAG1 expression was significantly increased in SZ and exhibited positive correlations with mediators of the canonical Notch pathway but negative correlations with mature Ol genes. Ol densities were significantly decreased in SZ. These data are consistent with the hypothesis that Ol and myelin deficits in SZ involve a failure of Ol precursors to appropriately exit the cell cycle in order to differentiate and mature into myelinating Ols.
SCZ Keywordsschizophrenia
2J Psychiatr Res 2014 Jan 48: 94-101
TitleIncreased susceptibility to apoptosis in cultured fibroblasts from antipsychotic-na´ve first-episode schizophrenia patients.
AbstractAltered apoptosis has been proposed as a potential mechanism involved in the abnormal neurodevelopment and neurodegenerative processes associated with schizophrenia. The aim of this study was to investigate in primary fibroblast cultures whether antipsychotic-na´ve patients with first-episode schizophrenia have greater apoptotic susceptibility than healthy controls. Cell growth, cell viability and various apoptotic hallmarks (caspase-3 activity, translocation of phosphatidylserine, chromatin condensation and gene expression of AKT1, BAX, BCL2, CASP3, GSK3B and P53) were measured in fibroblast cultures obtained from skin biopsies of patients (n = 11) and healthy controls (n = 8), both in basal conditions and after inducing apoptosis with staurosporine. Compared to controls, cultured fibroblasts from patients showed higher caspase-3 activity and lower BCL2 expression. When exposed to staurosporine, fibroblasts from patients also showed higher caspase-3 activity; a higher percentage of cells with translocated phosphatidylserine and condensed chromatin; and higher p53 expression compared to fibroblasts from controls. No differences in cell viability or cell growth were detected. These results strongly support the hypothesis that first-episode schizophrenia patients may have increased susceptibility to apoptosis, which may be involved in the onset and progression of the disease.
SCZ Keywordsschizophrenia
3Balkan J. Med. Genet. 2014 Dec 17: 15-23
TitleGenome-wide methylation profiling of schizophrenia.
Abstractschizophrenia is one of the major psychiatric disorders. It is a disorder of complex inheritance, involving both heritable and environmental factors. DNA methylation is an inheritable epigenetic modification that stably alters gene expression. We reasoned that genetic modifications that are a result of environmental stimuli could also make a contribution. We have performed 26 high-resolution genome-wide methylation array analyses to determine the methylation status of 27,627 CpG islands and compared the data between patients and healthy controls. Methylation profiles of DNAs were analyzed in six pools: 220 schizophrenia patients; 220 age-matched healthy controls; 110 female schizophrenia patients; 110 age-matched healthy females; 110 male schizophrenia patients; 110 age-matched healthy males. We also investigated the methylation status of 20 individual patient DNA samples (eight females and 12 males. We found significant differences in the methylation profile between schizophrenia and control DNA pools. We found new candidate genes that principally participate in apoptosis, synaptic transmission and nervous system development (GABRA2, LIN7B, CASP3). Methylation profiles differed between the genders. In females, the most important genes participate in apoptosis and synaptic transmission (XIAP, GABRD, OXT, KRT7), whereas in the males, the implicated genes in the molecular pathology of the disease were DHX37, MAP2K2, FNDC4 and GIPC1. Data from the individual methylation analyses confirmed, the gender-specific pools results. Our data revealed major differences in methylation profiles between schizophrenia patients and controls and between male and female patients. The dysregulated activity of the candidate genes could play a role in schizophrenia pathogenesis.
SCZ Keywordsschizophrenia