1Fish Physiol. Biochem. 2015 Dec 41: 1383-92
PMID26156500
TitleInvestigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain.
AbstractAntipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35%), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38%) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in ENTPD2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug.
SCZ Keywordsschizophrenia
2Int. J. Neuropsychopharmacol. 2015 Feb 18: -1
PMID25522406
TitleSchizophrenia gene expression profile reverted to normal levels by antipsychotics.
AbstractDespite the widespread use of antipsychotics, little is known of the molecular bases behind the action of antipsychotic drugs. A genome-wide study is needed to characterize the genes that affect the clinical response and their adverse effects.
Here we show the analysis of the blood transcriptome of 22 schizophrenia patients before and after medication with atypical antipsychotics by next-generation sequencing.
We found that 17 genes, among the 21 495 genes analyzed, have significantly-altered expression after medication (p-value adjusted [Padj] <0.05). Six genes (ADAMTS2, CD177, CNTNAP3, ENTPD2, RFX2, and UNC45B) out of the 17 are among the 200 genes that we characterized with differential expression in a previous study between antipsychotic-naïve schizophrenia patients and controls (Sainz et al., 2013). This number of schizophrenia-altered expression genes is significantly higher than expected by chance (Chi-test, Padj 1.19E-50), suggesting that at least part of the antipsychotic beneficial effects is exerted by modulating the expression of these genes. Interestingly, all six of these genes were overexpressed in patients and reverted to control levels of expression after treatment. We also found a significant enrichment of genes related to obesity and diabetes, known adverse affects of antipsychotics.
These results may facilitate understanding of unknown molecular mechanisms behind schizophrenia symptoms and the molecular mechanisms of antipsychotic drugs.
SCZ Keywordsschizophrenia