1Ann. N. Y. Acad. Sci. 2003 Nov 1003: 375-7
PMID14684465
TitleExpression of ARHGEF11 mRNA in schizophrenic thalamus.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenic
2Synapse 2006 Jun 59: 394-402
PMID16485262
TitleExpression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia.
AbstractThe excitatory amino acid transporters (EAATs) are a family of plasma membrane proteins that maintain synaptic glutamate concentration by removing glutamate from the synaptic cleft. EAATs are expressed by glia (EAAT1 and EAAT2) and neurons (EAAT3 and EAAT4) throughout the brain. Glutamate reuptake is regulated, in part, by EAAT-interacting proteins that modulate subcellular localization and glutamate transport activity of the EAATs. Several lines of investigation support the hypothesis of glutamatergic abnormalities in schizophrenia. Previous work in our laboratory demonstrated increased expression of EAAT1 and EAAT2 transcripts in the thalamus, suggesting that alterations in synaptic glutamate levels may contribute to the pathophysiology of schizophrenia. Since EAAT-interacting proteins regulate EAAT function, directly impacting glutamatergic neurotransmission, we hypothesized that expression of EAAT-interacting proteins may also be altered in schizophrenia. Using in situ hybridization in subjects with schizophrenia and a comparison group, we detected increased expression of JWA and KIAA0302, molecules that regulate EAAT3 and EAAT4, respectively, in the thalamus in schizophrenia. In contrast, we did not find changes in the expression of transcripts for the EAAT2 and EAAT4 regulatory proteins GPS-1 and ARHGEF11. To address prior antipsychotic treatment in our schizophrenic subjects, we treated rats with haloperidol and clozapine for 4 weeks, and found changes in transcript expression of the EAAT-interacting proteins in clozapine-, but not haloperidol-, treated rats. These findings suggest that proteins associated with the regulation of glutamate reuptake may be abnormal in this illness, supporting the hypothesis of altered thalamic glutamatergic neurotransmission in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Synapse 2006 Jun 59: 394-402
PMID16485262
TitleExpression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia.
AbstractThe excitatory amino acid transporters (EAATs) are a family of plasma membrane proteins that maintain synaptic glutamate concentration by removing glutamate from the synaptic cleft. EAATs are expressed by glia (EAAT1 and EAAT2) and neurons (EAAT3 and EAAT4) throughout the brain. Glutamate reuptake is regulated, in part, by EAAT-interacting proteins that modulate subcellular localization and glutamate transport activity of the EAATs. Several lines of investigation support the hypothesis of glutamatergic abnormalities in schizophrenia. Previous work in our laboratory demonstrated increased expression of EAAT1 and EAAT2 transcripts in the thalamus, suggesting that alterations in synaptic glutamate levels may contribute to the pathophysiology of schizophrenia. Since EAAT-interacting proteins regulate EAAT function, directly impacting glutamatergic neurotransmission, we hypothesized that expression of EAAT-interacting proteins may also be altered in schizophrenia. Using in situ hybridization in subjects with schizophrenia and a comparison group, we detected increased expression of JWA and KIAA0302, molecules that regulate EAAT3 and EAAT4, respectively, in the thalamus in schizophrenia. In contrast, we did not find changes in the expression of transcripts for the EAAT2 and EAAT4 regulatory proteins GPS-1 and ARHGEF11. To address prior antipsychotic treatment in our schizophrenic subjects, we treated rats with haloperidol and clozapine for 4 weeks, and found changes in transcript expression of the EAAT-interacting proteins in clozapine-, but not haloperidol-, treated rats. These findings suggest that proteins associated with the regulation of glutamate reuptake may be abnormal in this illness, supporting the hypothesis of altered thalamic glutamatergic neurotransmission in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4Schizophr. Res. 2008 Sep 104: 108-20
PMID18678470
TitleAbnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia.
AbstractGlutamate cycling is critically important for neurotransmission, and may be altered in schizophrenia. The excitatory amino acid transporters (EAATs) facilitate the reuptake of glutamate from the synaptic cleft and have a key role in glutamate cycling. We hypothesized that expression of the EAATs and the EAAT regulating proteins ARHGEF11, JWA, G-protein suppressor pathway 1 (GPS1), and KIAA0302 are altered in the brain in schizophrenia. To test this, we measured expression of EAAT1, EAAT2, EAAT3, and EAAT interacting proteins in postmortem tissue from the dorsolateral prefrontal and anterior cingulate cortex of patients with schizophrenia and a comparison group using in situ hybridization and Western blot analysis. We found increased EAAT1 transcripts and decreased protein expression, increased EAAT3 transcripts and protein, and elevated protein expression of both GPS1 and KIAA0302 protein. We did not find any changes in expression of EAAT2. These data indicate that proteins involved in glutamate reuptake and cycling are altered in the cortex in schizophrenia, and may provide potential targets for future treatment strategies.
SCZ Keywordsschizophrenia, schizophrenic
5Hum Psychopharmacol 2014 Nov 29: 552-8
PMID25319871
TitleHuman Rho guanine nucleotide exchange factor 11 gene is associated with schizophrenia in a Japanese population.
AbstractThe human Rho guanine nucleotide exchange factor 11 (ARHGEF11) gene is one of the candidate genes for type 2 diabetes mellitus (T2DM). ARHGEF11 is mapped to chromosome 1q21, which has susceptible risk loci for T2DM and schizophrenia. We hypothesized that ARHGEF11 contributes to the pathogenesis of schizophrenia.
We selected eight single nucleotide polymorphisms of ARHGEF11 that had significant associations with T2DM for a case-control association study of 490 patients with schizophrenia and 500 age-matched and sex-matched controls.
We did not find any differences in allelic, genotypic associations, or minor allele frequencies with schizophrenia. Analysis of the rs6427340-rs6427339 haplotype and the rs822585-rs6427340-rs6427339 haplotype combination provided significant evidence of an association with schizophrenia (global permutations p = 0.00047 and 0.0032, respectively). C-C of the rs6427340-rs6427339 haplotype and A-C-C of the rs822585-rs6427340-rs6427339 haplotype carried higher risk factors for schizophrenia (permutation p = 0.0010 and 0.0018, respectively). A-C-T of the rs822585-rs6427340-rs6427339 haplotype had a possible protective effect (permutation p = 0.031).
These results provide new evidence that ARHGEF11 may constitute a risk factor for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic