Literature Search Results for Gene GABRG2

GABRG2
1
DNA Seq. 2000 -1 11: 373-82
PMID11328646
TitleComplete genomic sequence of 195 Kb of human DNA containing the gene GABRG2.
AbstractGABA (gamma-aminobutyric acid), as the main inhibitory neurotransmitter in the brain, plays an essential role for the overall balance between neuronal excitation and inhibition by acting on GABAA receptors, which are ligand-gated chloride channels. Impaired GABAergic function contributes to certain forms of epilepsy, schizophrenia, Alzheimer's Disease, and other neurological disorders. In order to identify possible genetic features and to further study biological regulation of GABAA receptor genes whose promoter elements and sequence anomalies may contribute to epileptic disorders, as an initial step, we shot-gun sequenced a BAC clone, dj082c10 (195,909-bp in size), encompassing human gamma(2) subunit of GABAA receptor (GABRG2). It is, we believe, the first genomic sequence of the GABA receptor gamma subunit family. Four contigs were assembled from 2950 reads prior to gap in an average redundancy of eight folds over the entire region. The precision of the consensus sequence was predicted to be 99.999% after closing gaps and finishing weak regions. The nine exons of GABRG2 spans an 85-kb region that had 81 SINEs comprising 22.32%, and nine L1 elements comprising 3.40%, respectively. However, the density of L1 in the regions flanking GABRG2 gene (29.45% by 45 elements) is significantly higher than that within the gene. The length of GABRG2 introns varies in the range of 1.5 kb to 38.1 kb.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
2
Biol. Psychiatry 2005 Sep 58: 440-5
PMID15993854
TitleAssociation analysis of chromosome 5 GABAA receptor cluster in Japanese schizophrenia patients.
AbstractSeveral investigations suggest that abnormalities in gamma-amino butyric acid (GABA) neurotransmission systems may be related to the pathophysiology of schizophrenia. A GABA(A) receptor gene cluster on 5q31-35 (beta2 [GABRB2], alpha6 [GABRA6], alpha1 [GABRA1], and gamma2 [GABRG2] subunit genes) is one of the most attractive candidate regions for schizophrenia susceptibility.
We performed 1) systematic polymorphism search of GABRB2, GABRA6, and GABRA1, in addition to our colleague's study of GABRG2; 2) evaluation of linkage disequilibrium (LD) within this cluster with 35 single nucleotide polymorphisms (SNPs); 3) "selection of haplotype-tagging (ht) SNPs"; and 4) two-stage association analysis that comprised first-set screening analysis of all htSNPs (288 Japanese schizophrenia patients and 288 control subjects) and second-set replication analysis of the positive htSNPs (901 schizophrenic patients and 806 control subjects).
In the first-set scan, we found a significant association of two htSNPs in GABRA1, but no association of GABRB2, GABRA6, and GABRG2. In the following second-set analysis, however, we could not confirm these significant associations.
These results indicate that this gene cluster may not play a major role in Japanese schizophrenia. They also raised an alert with regard to preliminary genetic association analysis using a small sample size.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
3
Mol. Psychiatry 2005 Dec 10: 1074-88, 1057
PMID16172613
TitleGenetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.
AbstractWe previously performed a genome-wide linkage scan in Portuguese schizophrenia families that identified a risk locus on chromosome 5q31-q35. This finding was supported by meta-analysis of 20 other schizophrenia genome-wide scans that identified 5q23.2-q34 as the second most compelling susceptibility locus in the genome. In the present report, we took a two-stage candidate gene association approach to investigate a group of gamma-aminobutyric acid (GABA) A receptor subunit genes (GABRA1, GABRA6, GABRB2, GABRG2, and GABRP) within our linkage peak. These genes are plausible candidates based on prior evidence for GABA system involvement in schizophrenia. In the first stage, associations were detected in a Portuguese patient sample with single nucleotide polymorphisms (SNPs) and haplotypes in GABRA1 (P=0.00062-0.048), GABRP (P=0.0024-0.042), and GABRA6 (P=0.0065-0.0088). The GABRA1 and GABRP findings were replicated in the second stage in an independent German family-based sample (P=0.0015-0.043). Supportive evidence for association was also obtained for a previously reported GABRB2 risk haplotype. Exploratory analyses of the effects of associated GABRA1 haplotypes on transcript levels found altered expression of GABRA6 and coexpressed genes of GABRA1 and GABRB2. Comparison of transcript levels in schizophrenia patients and unaffected siblings found lower patient expression of GABRA6 and coexpressed genes of GABRA1. Interestingly, the GABRA1 coexpressed genes include synaptic and vesicle-associated genes previously found altered in schizophrenia prefrontal cortex. Taken together, these results support the involvement of the chromosome 5q GABAA receptor gene cluster in schizophrenia, and suggest that schizophrenia-associated haplotypes may alter expression of GABA-related genes.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
4
Biol. Psychiatry 2005 Sep 58: 440-5
PMID15993854
TitleAssociation analysis of chromosome 5 GABAA receptor cluster in Japanese schizophrenia patients.
AbstractSeveral investigations suggest that abnormalities in gamma-amino butyric acid (GABA) neurotransmission systems may be related to the pathophysiology of schizophrenia. A GABA(A) receptor gene cluster on 5q31-35 (beta2 [GABRB2], alpha6 [GABRA6], alpha1 [GABRA1], and gamma2 [GABRG2] subunit genes) is one of the most attractive candidate regions for schizophrenia susceptibility.
We performed 1) systematic polymorphism search of GABRB2, GABRA6, and GABRA1, in addition to our colleague's study of GABRG2; 2) evaluation of linkage disequilibrium (LD) within this cluster with 35 single nucleotide polymorphisms (SNPs); 3) "selection of haplotype-tagging (ht) SNPs"; and 4) two-stage association analysis that comprised first-set screening analysis of all htSNPs (288 Japanese schizophrenia patients and 288 control subjects) and second-set replication analysis of the positive htSNPs (901 schizophrenic patients and 806 control subjects).
In the first-set scan, we found a significant association of two htSNPs in GABRA1, but no association of GABRB2, GABRA6, and GABRG2. In the following second-set analysis, however, we could not confirm these significant associations.
These results indicate that this gene cluster may not play a major role in Japanese schizophrenia. They also raised an alert with regard to preliminary genetic association analysis using a small sample size.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
5
Pharmacogenomics J. 2005 -1 5: 89-95
PMID15772696
TitleHaplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder.
AbstractPsychostimulant use disorder and schizophrenia have a substantial genetic basis. Evidence from human and animal studies on the involvement of the gamma-aminobutyric acid (GABA) system in methamphetamine (METH) use disorder and schizophrenia is mounting. As we tested for the association of the human GABA(A) receptor gamma 2 subunit gene (GABRG2) with each diagnostic group, we used a case-control design with a set of 178 subjects with METH use disorder, 288 schizophrenics and 288 controls. First, we screened 96 controls and identified six SNPs in GABRG2, three of whom we newly reported. Next, we selected two SNPs, 315C>T and 1128+99C>A, as representatives of the linkage disequilibrium blocks for further case-control association analysis. Although no associations were found in either allelic or genotypic frequencies, we detected a haplotypic association in GABRG2 with METH use disorder, but not with schizophrenia. This finding partly replicates a recent case-control study of GABRG2 in METH use disorder, and thus indicates that GABRG2 may be one of the susceptibility genes of METH use disorder.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
6
Pharmacogenomics J. 2005 -1 5: 89-95
PMID15772696
TitleHaplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder.
AbstractPsychostimulant use disorder and schizophrenia have a substantial genetic basis. Evidence from human and animal studies on the involvement of the gamma-aminobutyric acid (GABA) system in methamphetamine (METH) use disorder and schizophrenia is mounting. As we tested for the association of the human GABA(A) receptor gamma 2 subunit gene (GABRG2) with each diagnostic group, we used a case-control design with a set of 178 subjects with METH use disorder, 288 schizophrenics and 288 controls. First, we screened 96 controls and identified six SNPs in GABRG2, three of whom we newly reported. Next, we selected two SNPs, 315C>T and 1128+99C>A, as representatives of the linkage disequilibrium blocks for further case-control association analysis. Although no associations were found in either allelic or genotypic frequencies, we detected a haplotypic association in GABRG2 with METH use disorder, but not with schizophrenia. This finding partly replicates a recent case-control study of GABRG2 in METH use disorder, and thus indicates that GABRG2 may be one of the susceptibility genes of METH use disorder.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
7
Psychiatr. Genet. 2007 Feb 17: 43-5
PMID17167345
TitleNo evidence for an association between variants at the gamma-amino-n-butyric acid type A receptor beta2 locus and schizophrenia.
AbstractThe alpha1/beta2/gamma2-containing heteropentamer is the most abundant gamma-amino-n-butyric acid type A receptor subtype in mammalian brains and the corresponding genes, the GABRA1, GABRB2, and GABRG2 genes, are located in chromosomal region 5q34 that several genome wide scans have implicated as a susceptibility region for schizophrenia. Given this positional and functional evidence, Lo et al. (Mol Psychiatry 2004; 9: 603-608) performed systematic linkage disequilibrium mapping of the GABAAR gene cluster on 5q34 in 130 schizophrenic patients and 170 controls, all of Chinese Han origin. In the single locus and haplotype analyses, single nucleotide polymorphisms in the GABRB2 gene showed highly significant association. The estimated effect caused by GABRB2 varied between odds ratios of 2.27 and 5.12. In order to re-examine their findings, we analyzed the most significantly associated single nucleotide polymorphism in the GABRB2 gene in a sample of 367 patients with schizophrenia and 360 controls, all of German descent. Our sample had a sufficient power to detect the effects described. Neither single marker nor haplotype analysis revealed a significant association with the disease status. Thus, our results do not support the hypothesis that genetic variation at the GABRB2 locus plays a major role in schizophrenic patients of European descent and that such variation would explain the previously observed linkage findings at this chromosomal region.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
8
Psychiatr. Genet. 2007 Feb 17: 43-5
PMID17167345
TitleNo evidence for an association between variants at the gamma-amino-n-butyric acid type A receptor beta2 locus and schizophrenia.
AbstractThe alpha1/beta2/gamma2-containing heteropentamer is the most abundant gamma-amino-n-butyric acid type A receptor subtype in mammalian brains and the corresponding genes, the GABRA1, GABRB2, and GABRG2 genes, are located in chromosomal region 5q34 that several genome wide scans have implicated as a susceptibility region for schizophrenia. Given this positional and functional evidence, Lo et al. (Mol Psychiatry 2004; 9: 603-608) performed systematic linkage disequilibrium mapping of the GABAAR gene cluster on 5q34 in 130 schizophrenic patients and 170 controls, all of Chinese Han origin. In the single locus and haplotype analyses, single nucleotide polymorphisms in the GABRB2 gene showed highly significant association. The estimated effect caused by GABRB2 varied between odds ratios of 2.27 and 5.12. In order to re-examine their findings, we analyzed the most significantly associated single nucleotide polymorphism in the GABRB2 gene in a sample of 367 patients with schizophrenia and 360 controls, all of German descent. Our sample had a sufficient power to detect the effects described. Neither single marker nor haplotype analysis revealed a significant association with the disease status. Thus, our results do not support the hypothesis that genetic variation at the GABRB2 locus plays a major role in schizophrenic patients of European descent and that such variation would explain the previously observed linkage findings at this chromosomal region.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
9
Schizophr. Res. 2009 Oct 114: 33-8
PMID19682861
TitleAssociation study of the gamma-aminobutyric acid type a receptor gamma2 subunit gene with schizophrenia.
AbstractSchizophrenia (SCZ) is a severe neuropsychiatric disorder with a strong genetic basis. We analyzed eight GABRG2 and one DRD5 tag single-nucleotide polymorphisms for association with SCZ in 109 small nuclear families and 229 independent SCZ case-control pairs. The marker rs183294 in the 5' region of GABRG2 was found to be associated with SCZ in both samples with the C allele over-represented in SCZ cases and over-transmitted in SCZ families (combined z=9.18; p<1 x 10(-3)). Taken together, the results of the present study suggest that GABRG2 may be involved in SCZ susceptibility, but further studies are required.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics
10
Neuropsychobiology 2014 -1 69: 154-8
PMID24776921
TitleAssociation study of GABRG2 polymorphisms with suicidal behaviour in schizophrenia patients with alcohol use disorder.
AbstractSchizophrenia is a severe neuropsychiatric disorder where the role of ?-aminobutyric acid (GABA), an inhibitory neurotransmitter, has been implicated in its aetiopathophysiology. Several genes coding for GABAA subunits, including the GABRG2 gene that encodes the ?2 subunit, are clustered at 5q31-q35, a chromosomal region that is associated with schizophrenia in genome scan studies. We recently reported GABRG2 to be associated with schizophrenia in our case-control and family samples.
We tested eight single-nucleotide polymorphisms spanning the GABRG2 gene for an association with suicidal behaviour in our schizophrenia sample of European ancestry (n = 197), taking into account history of alcohol abuse or dependence.
We found the haplotypes of the rs183294 and rs209356 markers to be significantly associated with history of suicide attempt (p < 0.01) as well as suicide specifier scores (p < 0.05). The association appeared to be originating in patients with a history of alcohol dependence or abuse.
Taken together, the results of the present study suggest that GABRG2 may be involved in suicidal behaviour in schizophrenia patients with alcohol dependence or abuse, but replications are required. These results may help in the discovery of novel treatments for alcoholism and/or prevention of suicide.
SCZ Keywordsschizophrenia,schizophrenic,schizophrenics


Copyright © Bioinformatics and Systems Medicine Laboratory All Rights Reserved since 2009.