Literature Search Results for Gene MOBP

MOBP
1
Mol. Psychiatry 2005 Mar 10: 309-22
PMID15303102
TitleTranscriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.
AbstractMajor depressive disorder is one of the most common and devastating psychiatric disorders. To identify candidate mechanisms for major depressive disorder, we compared gene expression in the temporal cortex from 12 patients with major depressive disorder and 14 matched controls using Affymetrix HgU95A microarrays. Significant expression changes were revealed in families of genes involved in neurodevelopment, signal transduction and cell communication. Among these, the expression of 17 genes related to oligodendrocyte function was significantly (P < 0.05, fold change > 1.4) decreased in patients with major depressive disorder. Eight of these 17 genes encode structural components of myelin (CNP, MAG, MAL, MOG, MOBP, PMP22, PLLP, PLP1). Five other genes encode enzymes involved in the synthesis of myelin constituents (ASPA, UGT8), or are essential in regulation of myelin formation (ENPP2, EDG2, TF, KLK6). One gene, that is, SOX10, encodes a transcription factor regulating other myelination-related genes. OLIG2 is a transcription factor present exclusively in oligodendrocytes and oligodendrocyte precursors. Another gene, ERBB3, is involved in oligodendrocyte differentiation. In addition to myelination-related genes, there were significant changes in multiple genes involved in axonal growth/synaptic function. These findings suggest that major depressive disorder may be associated with changes in cell communication and signal transduction mechanisms that contribute to abnormalities in oligodendroglia and synaptic function. Taken together with other studies, these findings indicate that major depressive disorder may share common oligodendroglial abnormalities with schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia
2
Neurobiol. Dis. 2006 Mar 21: 531-40
PMID16213148
TitleMyelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients.
AbstractMicroarray and other studies have reported oligodendrocyte and myelin-related (OMR) deficits in schizophrenia. Here, we employed a quantitative approach to determine the magnitude of OMR gene expression deficits and their brain-region specificity. In addition, we examined how expression levels among the studied OMR genes are interrelated. mRNA of MAG, CNP, SOX10, CLDN11, and PMP22, but not MBP and MOBP, was reduced in the hippocampus and anterior cingulate cortex but not in the putamen of patients with schizophrenia. Expression of the only protein examined (CNP) was decreased in the hippocampus but not in the putamen. Correlation and factor analyses revealed that mRNA levels for genes that did exhibit differential expression in schizophrenia (MAG, CNP, SOX10, CLDN11, and PMP2), as opposed to those that did not (MOBP and MBP), loaded on separate factors. Thus, OMR gene and protein expression deficits in schizophrenia are brain-region specific, and the affected components may share regulatory elements.
SCZ Keywordsschizophrenia
3
Int. J. Neuropsychopharmacol. 2007 Aug 10: 547-55
PMID17291372
TitleOligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies?
AbstractThe evidence implicating oligodendroglia in major mental disorders has grown significantly in the past few years. Microarray analysis revealed altered expression of oligodendroglia-related genes in multiple brain regions from several, clinically diverse groups of subjects with schizophrenia (SZ) as well as subjects with bipolar disorder (BD) and major depressive disorders (MDD), alcoholics and cocaine users. In line with gene expression findings, evidence for ultrastructural changes in white matter and altered oligodendroglia in these disorders were reported in neuroimaging and neuropathological studies. Changes in oligodendroglia-related genes reported in SZ, BD and MDD appear to display considerable similarities (particularly decreased expression of MAG, ERBB, TF, PLP1, MOG, MOBP, MOG), while changes in cocaine abuse and alcoholism are more diverse. Common oligodendroglial abnormalities might indicate aetiological or pathophysiological overlaps between different disorders. The possible mechanisms of oligodendroglial abnormalities may involve functional variations in oligodendroglia-related genes, epigenetic regulation of chromatin, DA system hyperactivity and other mechanisms.
SCZ Keywordsschizophrenia
4
Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007 Mar 144B: 129-58
PMID17266109
TitleTowards understanding the schizophrenia code: an expanded convergent functional genomics approach.
AbstractIdentifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia
5
Synapse 2008 Jan 62: 1-7
PMID17948890
TitleEffect of MK-801 on gene expressions in the amygdala of rats.
AbstractRodents treated with N-methyl-D-aspartate (NMDA) antagonists have been thought to be an animal model of schizophrenia. In this study, we examined gene expression in the amygdala of rats chronically treated with MK-801, as well as behavioral changes, such as social behavior, in these animals. The social interaction test, a measure of social behavior, and locomotor activity was performed in male Wistar rats injected with MK-801 (0.13 mg/kg i.p.) or saline for 14 days. Changes in mRNA levels were analyzed using a GeneChip microarray system. Real-time quantitative PCR (RT-qPCR) assay was subsequently conducted to confirm the results of the microarray analysis. MK-801 decreased social interaction and increased locomotor activity in rats, consistent with previous reports. We found 23 downregulated genes and 16 upregulated genes, with the gene encoding arginine-vasopressin (AVP) being most downregulated, and that for transthyretin (Ttr) most upregulated. mRNA levels, quantified by RT-qPCR assay, were altered for genes related to neuropeptides (AVP, Sstr2), the arachidonic cascade (Ptgds), myelination (Mobp, Enpp2), neurotrophic factors (Igfbp2), and hormonal milieu (Ttr). Downregulation of the AVP gene in the amygdala of MK-801-treated rats may provide a basis for the ability of AVP-analogues to ameliorate the behavioral disturbances caused by blockade of the NMDA receptor. The results of this study provide an insight into the neural substrates responsible for the generation of psychotic symptoms.
SCZ Keywordsschizophrenia
6
Schizophr. Res. 2008 Jan 98: 129-38
PMID17964117
TitleExpression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia.
AbstractPrior studies have found decreased mRNA expression of oligodendrocyte-associated genes in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. However, it is unclear which specific genes are affected and whether the changes occur in the cortical white or grey matter. We assessed the mRNA expression levels of four oligodendrocyte-related genes: myelin-associated basic protein (MOBP), myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and oligodendrocyte-lineage transcription factor 2 (OLIG2) in DLPFC white and grey matter using quantitative-PCR (approximately 70 controls and approximately 30 patients with schizophrenia). We also examined the effects of high-risk polymorphisms in CNP and OLIG2 on mRNA levels of these genes. We found that genetic polymorphisms in CNP (rs2070106) and OLIG2 (rs1059004 and rs9653711), previously associated with schizophrenia, predicted low expression of these genes. Expression of MAG, CNP and OLIG2 did not differ between patients with schizophrenia and controls in the grey or white matter but MOBP mRNA levels were increased in the DLPFC white matter in patients with a history of substance abuse. MOBP and CNP protein in the white matter was not altered. Although previously reported reductions in the expression of myelin-related genes in the DLPFC were not detected, we show that individuals carrying risk-associated alleles in oligodendrocyte-related genes had relatively lower transcript levels. These data illustrate the importance of genetic background in gene expression studies in schizophrenia.
SCZ Keywordsschizophrenia
7
J. Mol. Neurosci. 2009 May 38: 2-11
PMID18836851
TitleDiscoidin domain receptor 1, a tyrosine kinase receptor, is upregulated in an experimental model of remyelination and during oligodendrocyte differentiation in vitro.
AbstractThe discoidin domain receptor (DDR1) is highly expressed in oligodendrocytes during the neurodevelopmental myelination process and is genetically associated to schizophrenia. In this study, we aimed to further assess the involvement of DDR1 in both remyelination and oligodendrocyte differentiation. In the mouse model of demyelination-remyelination induced by oral administration of cuprizone, in situ hybridization showed an upregulation of the DDR1 gene in three different white matter areas (corpus callosum, dorsal fornix, and external capsule) during the remyelination period. Moreover, real time reverse transcriptase polymerase chain reaction showed that the increase in DDR1 messenger RNA (mRNA) was strongly correlated with the number of DDR1-positive cells in the corpus callosum (Spearman coefficient = 0.987, P = 0.013). Cells positive for DDR1 mRNA were also positive for oligodendrocyte markers (OLIG2, carnosine, and APC) but not for markers of oligodendrocyte precursors (NG2), myelin markers (CNPase), microglia (CD11b), or reactive glia (GFAP). Differentiation of a human oligodendroglial cell line, HOG16, was associated with an increase in mRNA expression of DDR1 and several myelin proteins (MBP and MOBP) but not other proteins (APC and CNPase). Here, we demonstrate that DDR1 is upregulated in vitro and in vivo when oligodendrocyte myelinating machinery is activated. Further studies are needed to identify the specific molecular pathway.
SCZ Keywordsschizophrenia
8
Mol. Psychiatry 2012 Sep 17: 887-905
PMID22584867
TitleConvergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction.
AbstractWe have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
SCZ Keywordsschizophrenia


Copyright © Bioinformatics and Systems Medicine Laboratory All Rights Reserved since 2009.