Literature Search Results for Gene MOG

MOG
1
Schizophr. Res. 2005 Mar 73: 275-80
PMID15653272
TitleA family-based association study of the MOG gene with schizophrenia in the Chinese population.
AbstractRecently the expression of human myelin/oligodendrocyte glycoprotein (MOG) has been found to be significantly downregulated in the brain tissue of subjects with schizophrenia, suggesting that the MOG gene resides within a high-susceptibility locus for schizophrenia. In order to test this prediction, we analyzed three microsatellites from MOG in the Han Chinese population using a sample of 532 trios. Analysis of allele, genotype and haplotype frequencies showed weak positive association between the markers and the disease (p=0.01982). Our results would indicate that the MOG gene may play a significant role in schizophrenia in the Han Chinese. However, further study is required using other methods and involving other populations.
SCZ Keywordsschizophrenia
2
Mol. Psychiatry 2005 Mar 10: 309-22
PMID15303102
TitleTranscriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder.
AbstractMajor depressive disorder is one of the most common and devastating psychiatric disorders. To identify candidate mechanisms for major depressive disorder, we compared gene expression in the temporal cortex from 12 patients with major depressive disorder and 14 matched controls using Affymetrix HgU95A microarrays. Significant expression changes were revealed in families of genes involved in neurodevelopment, signal transduction and cell communication. Among these, the expression of 17 genes related to oligodendrocyte function was significantly (P < 0.05, fold change > 1.4) decreased in patients with major depressive disorder. Eight of these 17 genes encode structural components of myelin (CNP, MAG, MAL, MOG, MOBP, PMP22, PLLP, PLP1). Five other genes encode enzymes involved in the synthesis of myelin constituents (ASPA, UGT8), or are essential in regulation of myelin formation (ENPP2, EDG2, TF, KLK6). One gene, that is, SOX10, encodes a transcription factor regulating other myelination-related genes. OLIG2 is a transcription factor present exclusively in oligodendrocytes and oligodendrocyte precursors. Another gene, ERBB3, is involved in oligodendrocyte differentiation. In addition to myelination-related genes, there were significant changes in multiple genes involved in axonal growth/synaptic function. These findings suggest that major depressive disorder may be associated with changes in cell communication and signal transduction mechanisms that contribute to abnormalities in oligodendroglia and synaptic function. Taken together with other studies, these findings indicate that major depressive disorder may share common oligodendroglial abnormalities with schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia
3
Genes Brain Behav. 2005 Feb 4: 2-9
PMID15660663
TitleGenetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia.
AbstractSchizophrenia (SCZ) is a neuropsychiatric disorder that affects approximately 1% of the general population. The human leukocyte antigen (HLA) system has been implicated in several genetic studies of SCZ. The myelin oligodendrocyte glycoprotein (MOG) gene, which is located close to the HLA region, is considered a candidate for SCZ due to its association with white matter abnormalities and its importance in mediating the complement cascade. Four polymorphisms in the MOG gene (CA)n (TAAA)n, and two intronic polymorphisms, C1334T and C10991T, were investigated for the possibility of association with SCZ using 111 SCZ proband and their families. We examined the transmission of the alleles of each of these polymorphisms with the transmission disequilibrium test. We did not observe significant evidence for biased transmission of alleles at the (CA)n (chi2=2.430, 6 df, P=0.876) (TAAA)n (chi2=3.550, 5 df, P=0.616), C1334T (chi2=0.040, 1 df, P=0.841) and C10991T (chi2=0.154, 1 df, P=0.695) polymorphisms. Overall haplotype analysis using the TRANSMIT program was also not significant (chi2=7.954, 9 df, P=0.539). Furthermore, our results comparing mean age at onset in the genotype groups using the Kruskal-Wallis Test were not significant. Our case-control analyses (182 cases age-, sex- and ethnicity-matched with healthy controls) and combined z-score [(CA)n: z-score=-1.126, P=0.130; (TAAA)n: z-score=-0.233, P=0.408; C1334T: z-score=0.703, P=0.241; C10991T: z-score=0.551, P=0.291] were also not significant. Although our data are negative, the intriguing hypothesis for MOG in SCZ may warrant further investigation of this gene.
SCZ Keywordsschizophrenia
4
Int. J. Neuropsychopharmacol. 2007 Aug 10: 547-55
PMID17291372
TitleOligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies?
AbstractThe evidence implicating oligodendroglia in major mental disorders has grown significantly in the past few years. Microarray analysis revealed altered expression of oligodendroglia-related genes in multiple brain regions from several, clinically diverse groups of subjects with schizophrenia (SZ) as well as subjects with bipolar disorder (BD) and major depressive disorders (MDD), alcoholics and cocaine users. In line with gene expression findings, evidence for ultrastructural changes in white matter and altered oligodendroglia in these disorders were reported in neuroimaging and neuropathological studies. Changes in oligodendroglia-related genes reported in SZ, BD and MDD appear to display considerable similarities (particularly decreased expression of MAG, ERBB, TF, PLP1, MOG, MOBP, MOG), while changes in cocaine abuse and alcoholism are more diverse. Common oligodendroglial abnormalities might indicate aetiological or pathophysiological overlaps between different disorders. The possible mechanisms of oligodendroglial abnormalities may involve functional variations in oligodendroglia-related genes, epigenetic regulation of chromatin, DA system hyperactivity and other mechanisms.
SCZ Keywordsschizophrenia
5
Schizophr. Res. 2009 Jul 112: 54-64
PMID19447584
TitleSubcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder.
AbstractDeficits in the expression of oligodendrocyte and myelin genes have been described in numerous cortical regions in schizophrenia and affective disorders; however, relatively little attention has been paid to subcortical structures. Here we employed quantitative real time PCR to examine the mRNA expression of 17 genes that are expressed by oligodendrocyte precursors (OLPs) and their derivatives, including astrocytes. Four subcortical regions were examined (the anteroventral (AV) and mediodorsal thalamic nuclei (MDN), internal capsule (IC) and putamen (Put)) in postmortem material from subjects (age 25-68 at time of death) with no known psychiatric history (NCs) as well as in subjects with schizophrenia (SZ), major depressive disorder (MDD), and bipolar disorder (BPD). In all regions examined, genes expressed after the terminal differentiation of oligodendrocytes tended to have lower levels of mRNA expression in subjects with SZ compared to NCs. These differences were statistically significant across regions for four genes (CNP, GALC, MAG and MOG) and approached significance for TF. No genes were under expressed in MDD. Only TF was under expressed in BPD and only in the IC. In contrast, two astrocyte-associated genes (GFAP and ALDH1L1) had higher mean expression levels across regions in all psychiatric groups relative to NCs. These differences reached statistical significance for SZ and MDD relative to NCs. There were no age by diagnosis interactions. The majority of age regressions had negative slopes for the expression of oligodendrocyte-associated genes. GFAP but not ALDH1L1 expression was significantly and positively correlated with age in the MDN, AV and Put. Across subject groups the expression of both astrocyte genes was highly correlated with cumulative neuroleptic exposure in all regions except the Put. Significant positive correlations were also observed in some regions between cumulative neuroleptic exposure and the expression of genes associated with mature oligodendrocytes as well as with bipotential OLPs. Multiple negative correlations were observed between the mRNA expression of astrocyte genes and genes expressed by terminally differentiated oligodendrocytes. These data are discussed in the context of myelin turnover and potential effects of psychiatric illness as well as medications on the developmental fate of OLPs.
SCZ Keywordsschizophrenia
6
PLoS ONE 2012 -1 7: e38211
PMID22675524
TitleReduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.
AbstractMost brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], ?-actin [ACTB], thymosin ?-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
SCZ Keywordsschizophrenia
7
Transl Psychiatry 2012 -1 2: e167
PMID23032943
TitleThe association of white matter volume in psychotic disorders with genotypic variation in NRG1, MOG and CNP: a voxel-based analysis in affected individuals and their unaffected relatives.
AbstractWe investigated the role of variation in putative psychosis genes coding for elements of the white matter system by examining the contribution of genotypic variation in three single-nucleotide polymorphisms (SNPs) neuregulin 1 (NRG1) SNP8NRG221533, myelin oligodendrocytes glycoprotein (MOG) rs2857766 and CNP (rs2070106) and one haplotype HAP(ICE) (deCODE) to white matter volume in patients with psychotic disorder and their unaffected relatives. Structural magnetic resonance imaging and blood samples for genotyping were collected on 189 participants including patients with schizophrenia (SZ) or bipolar I disorder (BDI), unaffected first-degree relatives of these patients and healthy volunteers. The association of genotypic variation with white matter volume was assessed using voxel-based morphometry in SPM5. The NRG1 SNP and the HAP(ICE) haplotype were associated with abnormal white matter volume in the BDI group in the fornix, cingulum and parahippocampal gyrus circuit. In SZ the NRG1 SNP risk allele was associated with lower white matter volume in the uncinate fasciculus (UF), right inferior longitudinal fasciculus and the anterior limb of the internal capsule. Healthy G-homozygotes of the MOG SNP had greater white matter volume in areas of the brainstem and cerebellum; this relationship was absent in those with a psychotic disorder and the unaffected relatives groups. The CNP SNP did not contribute to white matter volume variation in the diagnostic groups studied. Variation in the genes coding for structural and protective components of myelin are implicated in abnormal white matter volume in the emotion circuitry of the cingulum, fornix, parahippocampal gyrus and UF in psychotic disorders.
SCZ Keywordsschizophrenia
8
Brain Behav. Immun. 2014 Jan 35: 64-9
PMID24095895
TitleIn vitro-induced cell-mediated immune deviation to encephalitogenic antigens.
AbstractThe injection of antigens into the Anterior Chamber (AC) of the eye induces Anterior Chamber Associated Immune Deviation (ACAID), which is a potent form of immune deviation that is largely attributed to the effect of TGF?2 in the aqueous humor on ocular antigen-presenting cells (APCs). ACAID antigen presentation via APCs and B cells leads to the generation of antigen-specific T regulatory cells. The encephalitogenic antigens Myelin oligodendrocyte glycoprotein (MOG) and Myelin basic protein (MBP) have an obvious clinical relevance. We hypothesized that the intravenous injection of in vitro-generated ACAID APCs or in vitro-generated ACAID B cells specific to the encephalitogenic antigens MOG35-55/MBP induces specific peripheral tolerance in recipient BALB/c mice. We examined the suppression of MOG35-55-specific/MBP-specific inflammatory responses using delayed-type hypersensitivity (DTH) assays and Local Adoptive Transfer (LAT) assays. Results indicated that MOG35-55-specific/MBP-specific tolerance was generated after the intravenous injections of MOG35-55-specific/MBP-specific ACAID APCs, MOG35-55-specific/MBP-specific ACAID B cells, and MOG35-55-specific/MBP-specific ACAID T regulatory cells. The specific immune deviation was in vitro-induced, cell-mediated, and specific to the encephalitogenic antigens MOG35-55/MBP. This in vitro-mediated approach for the generation of MOG35-55/MBP-specific tolerance opens up avenues for the application of ACAID as a tool for the therapy of Multiple Sclerosis, Schizophrenia, and other diseases.
SCZ Keywordsschizophrenia
9
Ann. Neurol. 2014 Jul 76: 82-94
PMID24853231
TitleSeroprevalence of autoantibodies against brain antigens in health and disease.
AbstractWe previously reported an unexpectedly high seroprevalence (~10%) of N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1) autoantibodies (AB) in healthy and neuropsychiatrically ill subjects (N = 2,817). This finding challenges an unambiguous causal relationship of serum AB with brain disease. To test whether similar results would be obtained for other brain antigen-directed AB previously connected with pathological conditions, we systematically screened serum samples of 4,236 individuals.
Serum samples of healthy (n = 1,703) versus neuropsychiatrically ill subjects (schizophrenia, affective disorders, stroke, Parkinson disease, amyotrophic lateral sclerosis, personality disorder; total n = 2,533) were tested. For analysis based on indirect immunofluorescence, we used biochip mosaics of frozen brain sections (rat, monkey) and transfected HEK293 cells expressing respective recombinant target antigens.
Seroprevalence of all screened AB was comparable in healthy and ill individuals. None of them, however, reached the abundance of NMDAR1 AB (again ~10%; immunoglobulin [Ig] G ~1%). Appreciable frequency was noted for AB against amphiphysin (2.0%), ARHGAP26 (1.3%), CASPR2 (0.9%), MOG (0.8%), GAD65 (0.5%), Ma2 (0.5%), Yo (0.4%), and Ma1 (0.4%), with titers and Ig class distribution similar among groups. All other AB were found in ?0.1% of individuals (anti-AMPAR-1/2, AQP4, CV2, Tr/DNER, DPPX-IF1, GABAR-B1/B2, GAD67, GLRA1b, GRM1, GRM5, Hu, LGl1, recoverin, Ri, ZIC4). The predominant Ig class depended on antigen location, with intracellular epitopes predisposing to IgG (chi-square = 218.91, p = 2.8 × 10(-48) ).
To conclude, the brain antigen-directed AB tested here are comparably detectable in healthy subjects and the disease groups studied here, thus questioning an upfront pathological role of these serum AB.
SCZ Keywordsschizophrenia
10
Prog. Neuropsychopharmacol. Biol. Psychiatry 2014 Jan 48: 14-9
PMID24075897
TitleDecreased resting-state interhemispheric coordination in first-episode, drug-naive paranoid schizophrenia.
AbstractDysconnectivity hypothesis posits that schizophrenia relates to abnormalities in neuronal connectivity. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (FC) in patients with paranoid schizophrenia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in patients with paranoid schizophrenia at rest.
Forty-nine first-episode, drug-naive patients with paranoid schizophrenia and 50 age-, gender-, and education-matched healthy subjects underwent a resting-state functional magnetic resonance imaging (fMRI) scans. An automated VMHC approach was used to analyze the data.
Patients exhibited lower VMHC than healthy subjects in the precuneus (PCu), the precentral gyrus, the superior temporal gyrus (STG), the middle occipital gyrus (MOG), and the fusiform gyrus/cerebellum lobule VI. No region showed greater VMHC in the patient group than in the control group. Significantly negative correlation was observed between VMHC in the precentral gyrus and the PANSS positive/total scores, and between VMHC in the STG and the PANSS positive/negative/total scores.
Our results suggest that interhemispheric resting-state FC of VMHC is reduced in paranoid schizophrenia with clinical implications for psychiatric symptomatology thus further contribute to the dysconnectivity hypothesis of schizophrenia.
SCZ Keywordsschizophrenia
11
Int. J. Neuropsychopharmacol. 2015 Jan 18: -1
PMID25539505
TitleTargeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders.
AbstractExtensive research efforts have generated genomic, transcriptomic, proteomic, and functional data hoping to elucidate psychiatric pathophysiology. Selected reaction monitoring, a recently developed targeted proteomic mass spectrometric approach, has made it possible to evaluate previous findings and hypotheses with high sensitivity, reproducibility, and quantitative accuracy.
Here, we have developed a labelled multiplexed selected reaction monitoring assay, comprising 56 proteins previously implicated in the aetiology of major psychiatric disorders, including cell type markers or targets and effectors of known psychopharmacological interventions. We analyzed postmortem anterior prefrontal cortex (Brodmann area 10) tissue of patients diagnosed with schizophrenia (n=22), bipolar disorder (n=23), and major depressive disorder with (n=11) and without (n=11) psychotic features compared with healthy controls (n=22).
Results agreed with several previous studies, with the finding of alterations of Wnt-signalling and glutamate receptor abundance predominately in bipolar disorder and abnormalities in energy metabolism across the neuropsychiatric disease spectrum. Calcium signalling was predominantly affected in schizophrenia and affective psychosis. Interestingly, we were able to show a decrease of all 4 tested oligodendrocyte specific proteins (MOG, MBP, MYPR, CNPase) in bipolar disorder and to a lesser extent in schizophrenia and affective psychosis. Finally, we provide new evidence linking ankyrin 3 specifically to affective psychosis and the 22q11.2 deletion syndrome-associated protein septin 5 to schizophrenia.
Our study highlights the potential of selected reaction monitoring to evaluate the protein abundance levels of candidate markers of neuropsychiatric spectrum disorders, providing a high throughput multiplex platform for validation of putative disease markers and drug targets.
SCZ Keywordsschizophrenia


Copyright © Bioinformatics and Systems Medicine Laboratory All Rights Reserved since 2009.