Literature Search Results for Gene SYN2

SYN2
1
Behav Brain Funct 2005 Aug 1: 15
PMID16131404
TitleAssociation study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia.
AbstractThe occurrence of aberrant functional connectivity in the neuronal circuit is one of the integrative theories of the etiology of schizophrenia. Previous studies have reported that the protein and mRNA levels of the synapsin 2 (SYN2) and complexin 2 (CPLX2) genes were decreased in patients with schizophrenia. Synapsin 2 and complexin 2 are involved in synaptogenesis and the modulation of neurotransmitter release. This report presents a study of the association of polymorphisms of SYN2 and CPLX2 with schizophrenia in the Korean population.
Six single nucleotide polymorphisms (SNPs) and one 5-bp insertion/deletion in SYN2 and five SNPs in CPLX2 were genotyped in 154 Korean patients with schizophrenia and 133 control patients using direct sequencing or restriction fragment length polymorphism analysis. An intermarker linkage disequilibrium map was constructed for each gene.
Although there was no significant difference in the genotypic distributions and allelic frequencies of either SYN2 or CPLX2 polymorphisms between the schizophrenia and control groups, the two-way haplotype analyses revealed significant associations with the disease (P < 0.05 after Bonferroni correction). The three-way haplotype analyses also revealed a significant association of SYN2 with schizophrenia (P < 0.001 after Bonferroni correction).
These results suggest that both SYN2 and CPLX2 may confer susceptibility to schizophrenia in the Korean population.
SCZ Keywordsschizophrenia,schizophrenic
2
Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007 Mar 144B: 129-58
PMID17266109
TitleTowards understanding the schizophrenia code: an expanded convergent functional genomics approach.
AbstractIdentifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
SCZ Keywordsschizophrenia,schizophrenic
3
Schizophr. Res. 2007 Nov 96: 100-11
PMID17766091
TitleAssociation of synapsin 2 with schizophrenia in families of Northern European ancestry.
AbstractThe synapsin 2 (Syn2) gene (3p25) is implicated in synaptogenesis, neurotransmitter release, and the localization of nitric oxide synthase to the proximity of its targets. In this study we investigated linkage and association between the Syn2 locus and schizophrenia. 37 pedigrees of Northern European ancestry from the NIMH Human Genetics Initiative collection were used. Four microsatellites and twenty SNPs were genotyped. Linkage (FASTLINK) and association (TRANSMIT, PDTPHASE) between markers and schizophrenia were evaluated. A maximum heterogeneity LOD of 1.93 was observed at marker D3S3434 with a recessive mode of inheritance. Significant results were obtained for association with schizophrenia using TRANSMIT (minimum nominal p=0.0000005) and PDTPHASE (minimum nominal p=0.014) using single marker analyses. Haplotype analysis using markers in introns 5 and 6 of Syn2 provided a single haplotype that is significantly associated with schizophrenia using TRANSMIT (nominal p<0.00000001) and PDTPHASE (nominal p=0.02). Simulation studies confirm the global significance of these results, but demonstrate that the small p-values generated by the bootstrap routine of TRANSMIT can be consistently anticonservative. Review of the literature suggests that Syn2 is likely to be involved in the etiology or pathogenesis of schizophrenia.
SCZ Keywordsschizophrenia,schizophrenic
4
J. Neurochem. 2010 May 113: 601-14
PMID20096092
TitleTemporal dysregulation of cortical gene expression in the isolation reared Wistar rat.
AbstractThe critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as Gria2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.
SCZ Keywordsschizophrenia,schizophrenic
5
Eur Arch Psychiatry Clin Neurosci 2012 Apr 262: 199-205
PMID22120873
TitleCase-control association study for 10 genes in patients with schizophrenia: influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics.
AbstractThe aim of this study is to investigate possible associations between a set of single-nucleotide polymorphisms (SNPs) within 10 genes with Schizophrenia (SCZ) and response to antipsychotics in Korean in-patients treated with antipsychotics. Two hundred and twenty-one SCZ in-patients and 170 psychiatrically healthy controls were genotyped for 42 SNPs within ABCB1, ABCB4, TAP2, CLOCK, CPLX1, CPLX2, SYN2, NRG1, 5HTR1A and GPRIN2. Baseline and final clinical measures, including the Positive and Negative Symptoms Scale (PANSS), were recorded. Rs10042486 within 5HTR1A was associated with both SCZ and clinical improvement on PANSS total scores as well as on PANSS positive and PANSS negative scores. The haplotype analyses focusing on the four, three and two blocks' haplotypes within 5HTR1A confirmed such findings as well. We did not observe any significant association between the remaining genetic variants under investigation in this study and clinical outcomes. Our preliminary findings suggest that rs10042486 within 5HTR1A promoter region could be associated with SCZ and with clinical improvement on PANSS total, positive and negative scores in Korean patients with SCZ. However, taking into account the several limitations of our study, further research is needed to draw more definitive conclusions.
SCZ Keywordsschizophrenia,schizophrenic
6
Synapse 2012 Nov 66: 979-83
PMID22807112
TitleThe C allele of synonymous SNP (rs1142636, Asn170Asn) in SYN1 is a risk factor for the susceptibility of Korean female schizophrenia.
AbstractThe aim of this study was to investigate the association between the exonic single nucleotide polymorphisms (SNPs) of synapsin I (SYN1) (rs1142636, Asn170Asn, Xp11.23) and SYN2 (rs2289708, 3'-untranslated region, 3p25) in schizopherenia.
Two hundred eighty six schizophrenia patients and 304 control subjects were recruited. SNPs with a know heterozygosity and minor allele frequency (MAF) > 0.1 in Asian populations were selected and genotyped by direct sequencing.
The allelic frequencies of rs1142636 (SYN1) were associated with schizophrenia (P < 0.05), respectively. The allelic frequency of rs1142636 in all subjects was associated with schizophrenia [P = 0.000059, OR = 2.17 (95% CI = 1.47-3.18)]. The C allele frequency of rs1142636 was higher in schizophrenia (20.8%) than that in controls (10.8%). In the analysis of gender, the allelic frequency of rs1142636 was also strongly associated with female schizophrenia [P = 0.0001, OR = 2.65 (95% CI = 1.61-4.36)], but not with male schizophrenia. The C allele frequency of rs1142636 was higher in female schizophrenia (22.2%) than that in female controls (9.7%). The rs2289708 SNP (SYN2) did not show any association between schizophrenia and controls.
These results suggest that the C allele of a synonymous SNP (rs1142636, Asn170Asn, Xp11.23) in SYN1 may be a risk factor for the susceptibility of Koreran female schizophrenia.
SCZ Keywordsschizophrenia,schizophrenic
7
Int. J. Neuropsychopharmacol. 2013 Mar 16: 289-99
PMID22571925
TitleH3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression.
AbstractThe synapsin family of neuronal phosphoproteins is composed of three genes (SYN1, SYN2 and SYN3) with alternative splicing resulting in a number of variants with various levels of homology. These genes have been postulated to play significant roles in several neuropsychiatric disorders, including bipolar disorder, schizophrenia and epilepsy. Epigenetic regulatory mechanisms, such as histone modifications in gene regulatory regions, have also been proposed to play a role in a number of psychiatric disorders, including bipolar disorder and major depressive disorder. One of the best characterized histone modifications is histone 3 lysine 4 tri-methylation (H3K4me3), an epigenetic mark shown to be highly enriched at transcriptional start sites and associated with active transcription. In the present study we have quantified the expression of transcript variants of the three synapsin genes and investigated their relationship to H3K4me3 promoter enrichment in post-mortem brain samples. We found that histone modification marks were significantly increased in bipolar disorder and major depression and this effect was correlated with significant increases in gene expression. Our findings suggest that synapsin dysregulation in mood disorders is mediated in part by epigenetic regulatory mechanisms.
SCZ Keywordsschizophrenia,schizophrenic
8
Behav. Brain Res. 2013 Aug 251: 65-74
PMID23280234
TitleAutism-related behavioral abnormalities in synapsin knockout mice.
AbstractSeveral synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.
SCZ Keywordsschizophrenia,schizophrenic
9
Psychoneuroendocrinology 2015 Feb 52: 43-58
PMID25459892
TitleA role for synapsin in FKBP51 modulation of stress responsiveness: Convergent evidence from animal and human studies.
AbstractBoth the molecular co-chaperone FKBP51 and the presynaptic vesicle protein synapsin (alternatively spliced from SYN1-3) are intensively discussed players in the still insufficiently explored pathobiology of psychiatric disorders such as major depression, schizophrenia and posttraumatic stress disorder (PTSD). To address their still unknown interaction, we compared the expression levels of synapsin and five other neurostructural and HPA axis related marker proteins in the prefrontal cortex (PFC) and the hippocampus of restrained-stressed and unstressed Fkbp5 knockout mice and corresponding wild-type littermates. In addition, we compared and correlated the gene expression levels of SYN1, SYN2 and FKBP5 in three different online datasets comprising expression data of human healthy subjects as well as of predominantly medicated patients with different psychiatric disorders. In summary, we found that Fkbp5 deletion, which we previously demonstrated to improve stress-coping behavior in mice, prevents the stress-induced decline in prefrontal cortical (pc), but not in hippocampal synapsin expression. Accordingly, pc, but not hippocampal, synapsin protein levels correlated positively with a more active mouse stress coping behavior. Searching for an underlying mechanism, we found evidence that deletion of Fkbp5 might prevent stress-induced pc synapsin loss, at least in part, through improvement of pc Akt kinase activity. These results, together with our finding that FKBP5 and SYN1 mRNA levels were regulated in opposite directions in the PFC of schizophrenic patients, who are known for exhibiting an altered stress-coping behavior, provide the first evidence of a role for pc synapsin in FKBP51 modulation of stress responsiveness. This role might extend to other tissues, as we found FKBP5 and SYN1 levels to correlate inversely not only in human PFC samples but also in other expression sites. The main limitation of this study is the small number of individuals included in the correlation analyses. Future studies will have to verify the here-postulated role of the FKBP51-Akt kinase-synapsin pathway in stress responsiveness.
SCZ Keywordsschizophrenia,schizophrenic
10
Psychoneuroendocrinology 2015 Feb 52: 43-58
PMID25459892
TitleA role for synapsin in FKBP51 modulation of stress responsiveness: Convergent evidence from animal and human studies.
AbstractBoth the molecular co-chaperone FKBP51 and the presynaptic vesicle protein synapsin (alternatively spliced from SYN1-3) are intensively discussed players in the still insufficiently explored pathobiology of psychiatric disorders such as major depression, schizophrenia and posttraumatic stress disorder (PTSD). To address their still unknown interaction, we compared the expression levels of synapsin and five other neurostructural and HPA axis related marker proteins in the prefrontal cortex (PFC) and the hippocampus of restrained-stressed and unstressed Fkbp5 knockout mice and corresponding wild-type littermates. In addition, we compared and correlated the gene expression levels of SYN1, SYN2 and FKBP5 in three different online datasets comprising expression data of human healthy subjects as well as of predominantly medicated patients with different psychiatric disorders. In summary, we found that Fkbp5 deletion, which we previously demonstrated to improve stress-coping behavior in mice, prevents the stress-induced decline in prefrontal cortical (pc), but not in hippocampal synapsin expression. Accordingly, pc, but not hippocampal, synapsin protein levels correlated positively with a more active mouse stress coping behavior. Searching for an underlying mechanism, we found evidence that deletion of Fkbp5 might prevent stress-induced pc synapsin loss, at least in part, through improvement of pc Akt kinase activity. These results, together with our finding that FKBP5 and SYN1 mRNA levels were regulated in opposite directions in the PFC of schizophrenic patients, who are known for exhibiting an altered stress-coping behavior, provide the first evidence of a role for pc synapsin in FKBP51 modulation of stress responsiveness. This role might extend to other tissues, as we found FKBP5 and SYN1 levels to correlate inversely not only in human PFC samples but also in other expression sites. The main limitation of this study is the small number of individuals included in the correlation analyses. Future studies will have to verify the here-postulated role of the FKBP51-Akt kinase-synapsin pathway in stress responsiveness.
SCZ Keywordsschizophrenia,schizophrenic


Copyright © Bioinformatics and Systems Medicine Laboratory All Rights Reserved since 2009.