Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

100126333

Name

MIR708

Synonymous

MIRN708|hsa-mir-708;microRNA 708;MIR708;microRNA 708

Definition

-

Position

11q14.1

Gene type

ncRNA

Title

Abstract

MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells.

cancer pathogenesis is restricted by stresses that compromise cell division and survival. In this study, we identify miR-708, a little studied member of a set of microRNAs that have been implicated in stress control, as an important tumor suppressor in renal cell carcinoma (RCC). miR-708 expression was attenuated widely in human RCC specimens. Restoration of miR-708 expression in RCC cell lines decreased cell growth, clonability, invasion, and migration and elicited a dramatic increase in apoptosis. Moreover, intratumoral delivery of miR-708 was sufficient to trigger in vivo regression of established tumors in murine xenograft models of human RCC. Investigation of the targets of miR-708 identified the inhibitor of apoptosis protein survivin as important. siRNA-mediated knockdown of survivin partially phenocopied miR-708 overexpression suggesting that the proapoptotic role of miR-708 may be mediated primarily through survivin regulation. Additionally, we identified the E-cadherin regulators ZEB2 and BMI1 as likely miR-708 targets. Taken together, our findings define a major tumor suppressive role for miR-708, which may offer an attractive new target for prognostic and therapeutic intervention in RCC.

miR-708 acts as a tumor suppressor in human glioblastoma cells.

Glioblastoma (GBM) is one of the most lethal forms of human cancer, and new clinical biomarkers and therapeutic targets are urgently required. microRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional and/or translational level by binding the 3 untranslated regions (3 UTRs) of target mRNAs. The dysregulated expression of several miRNAs has been reported to modulate glioma progression. In the present study, we defined the expression and function of miR-708, which, based on real-time PCR analysis, were downregulated in GBM cells. The overexpression of miR-708 inhibited cell proliferation and invasion and induced apoptosis in the human GBM cell lines A172 and T98G. Furthermore, the overexpression of miR-708 reduced the expression of Akt1, CCND1, MMP2, EZH2, Parp-1 and Bcl2 in A172 and T98G cells. Taken together, our study suggests that miR-708 affects GBM cell proliferation and invasion, and induces apoptosis. It is suggested that miR-708 may play an important role as a tumor suppressor in GBM and it may be an attractive target for therapeutic intervention in GBM.

')