Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

1739

Name

DLG1

Synonymous

DLGH1|SAP-97|SAP97|dJ1061C18.1.1|hdlg;discs, large homolog 1 (Drosophila);DLG1;discs, large homolog 1 (Drosophila)

Definition

disks large homolog 1|presynaptic protein SAP97|synapse-associated protein 97

Position

3q29

Gene type

protein-coding

Title

Abstract

GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes.

Reorganization of the cortical cytoskeleton is a hallmark of T lymphocyte activation. Upon binding to antigen presenting cells, the T cells rapidly undergo cytoskeletal re-organization thus forming a cap at the cell-cell contact site leading to receptor clustering, protein segregation, and cellular polarization. Previously, we reported cloning of the human lymphocyte homologue of the Drosophila Discs Large tumor suppressor protein (hDlg). Here we show that a novel protein termed GAKIN binds to the guanylate kinase-like domain of hDlg. Affinity protein purification, peptide sequencing, and cloning of GAKIN cDNA from Jurkat J77 lymphocytes identified GAKIN as a novel member of the kinesin superfamily of motor proteins. GAKIN mRNA is ubiquitously expressed, and the predicted amino acid sequence shares significant sequence similarity with the Drosophila kinesin-73 motor protein. GAKIN sequence contains a motor domain at the NH(2) terminus, a central stalk domain, and a putative microtubule-interacting sequence called the CAP-Gly domain at the COOH terminus. Among the MAGUK superfamily of proteins examined, GAKIN binds to the guanylate kinase-like domain of PSD-95 but not of p55. The hDlg and GAKIN are localized mainly in the cytoplasm of resting T lymphocytes, however, upon CD2 receptor cross-linking the hDlg can translocate to the lymphocyte cap. We propose that the GAKIN-hDlg interaction lays the foundation for a general paradigm of coupling MAGUKs to the microtubule-based cytoskeleton, and that this interaction may be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes in vivo.

Binding of the human homolog of the Drosophila discs large tumor suppressor protein to the mitochondrial ribosomal protein MRP-S34.

The human homolog of the Drosophila discs large tumor suppressor protein (hDLG) functions as a scaffolding protein that facilitates the transmission of diverse downstream signals. Here we show that hDLG interacts through its PDZ domains with the carboxy-terminal S/TXV motif of the mitochondrial ribosomal protein S-34 (MRP-S34). Our results suggest that hDLG interacts with MRP-S34 prior to entry of MRP-S34 into the mitochondria and may be involved in the trafficking of MRP-S34.

Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the beta-TrCP ubiquitin ligase receptor.

The discs large (hDlg) tumor suppressor is intimately involved in the control of cell contact, polarity, and proliferation by interacting with several components of the epithelial junctional complex and with the APC tumor suppressor protein. In epithelial cells, hDlg protein stability is regulated through the ubiquitin-proteasome pathway: hDlg is actively degraded in isolated cells, whereas it accumulates upon cell-cell contact. During neoplastic transformation of epithelial cells, loss of the differentiated morphology and progression toward a metastatic phenotype correlate with down-regulation of hDlg levels and loss of contact-dependent stabilization. Here we show that upon hyperphosphorylation, hDlg interacts with the beta-TrCP ubiquitin ligase receptor through a DSGLPS motif within its Src homology 3 domain. As a consequence, overexpression of beta-TrCP enhances ubiquitination of Dlg protein and decreases its stability, whereas a dominant negative beta-TrCP mutant inhibits this process. Furthermore, a mutant Dlg protein that is unable to bind beta-TrCP displays a higher protein stability and is insensitive to beta-TrCP. Using RNA interference, we also demonstrate that endogenous beta-TrCP regulates hDlg protein levels in epithelial cells. Finally, we show that beta-TrCP selectively induces the degradation of the membrane-cytoplasmic pool, without affecting the nuclear pool of hDlg.

Direct binding of the human homologue of the Drosophila disc large tumor suppressor gene to seven-pass transmembrane proteins, tumor endothelial marker 5 (TEM5), and a novel TEM5-like protein.

The human homologue of the Drosophila discs large tumor suppressor gene (hDlg) is a member of the membrane-associated guanylate kinase family with three PSD-95/Dlg/ZO-1 (PDZ) domains. hDlg has been shown to bind tumor suppressor proteins, adenomatous polyposis coli (APC) and protein tyrosine phosphatase and tensin homologue (PTEN), and several viral oncoproteins, and has been implicated in the negative regulation of cell proliferation. hDlg has furthermore been shown to localize at the plasma membrane of synapses and to scaffold cell surface receptors and channels. In epithelial cells, hDlg localizes at the basolateral plasma membrane, but its localization mechanism is unknown. We searched here for a transmembrane protein that directly bound to hDlg. hDlg bound tumor endothelial marker 5 (TEM5), a seven-pass transmembrane protein that is homologous to the family B of G-protein-coupled receptors (GPCRs). TEM5 has previously been reported to display elevated expression during tumor angiogenesis and neoangiogenesis. The PDZ domains of hDlg bound the C-terminal PDZ-binding motif of TEM5. The expression of TEM5 was detected in endothelial cells of embryonic liver, where hDlg colocalized with TEM5. hDlg furthermore bound a novel seven-pass transmembrane protein, which was homologous to TEM5, and was named here a TEM5-like protein (TEM5-like). These results suggest that hDlg localizes at the plasma membrane through TEM5 and TEM5-like and furthermore scaffolds these GPCRs in endothelial cells during tumor angiogenesis and neoangiogenesis.

Inactivation of tumor suppressor Dlg1 augments transformation of a T-cell line induced by human T-cell leukemia virus type 1 Tax protein.

BACKGROUND: The interaction of human T-cell leukemia virus type 1 (HTLV-1) Tax1 protein with the tumor suppressor Dlg1 is correlated with cellular transformation. RESULTS: Here, we show that Dlg1 knockdown by RNA interference increases the ability of Tax1 to transform a mouse T-cell line (CTLL-2), as measured interleukin (IL)-2-independent growth. A Tax1 mutant defective for the Dlg1 interaction showed reduced transformation of CTLL-2 compared to wild type Tax1, but the transformation was minimally affected by Dlg1 reduction. The few Tax1DeltaC-transduced CTLL-2 cells that became transformed expressed less Dlg1 than parental cells, suggesting that Dlg1-low cells were selectively transformed by Tax1DeltaC. Moreover, all human T-cell lines immortalized by HTLV-1, including the recombinant HTLV-1-containing Tax1DeltaC, expressed less Dlg1 than control T-cell lines. CONCLUSION: These results suggest that inactivation of Dlg1 augments Tax1-mediated transformation of CTLL-2, and PDZ protein(s) other than Dlg1 are critically involved in the transformation.

The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B.

The activity of motor proteins must be tightly regulated in the cells to prevent unnecessary energy consumption and to maintain proper distribution of cellular components. Loading of the cargo molecule is one likely mechanism to activate an inactive motor. Here, we report that the activity of the kinesin-3 motor protein, GAKIN, is regulated by the direct binding of its protein cargo, human discs large (hDlg) tumor suppressor. Recombinant GAKIN exhibits potent microtubule gliding activity but has little microtubule-stimulated ATPase activity in solution, suggesting that it exists in an autoinhibitory form. In vitro binding measurements revealed that defined segments of GAKIN, particularly the MAGUK binding stalk (MBS) domain and the motor domain, mediate intramolecular interactions to confer globular protein conformation. Direct binding of the SH3-I3-GUK module of hDlg to the MBS domain of GAKIN activates the microtubule-stimulated ATPase activity of GAKIN by approximately 10-fold. We propose that the cargo-mediated regulation of motor activity constitutes a general paradigm for the activation of kinesins.

The nuclear RhoA exchange factor Net1 interacts with proteins of the Dlg family, affects their localization, and influences their tumor suppressor activity.

Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.

Functional involvement of human discs large tumor suppressor in cytokinesis.

Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.

Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein.

Synapses are highly specialized sites of cell-cell contact involved in signal transfer. The molecular mechanisms modulating the assembly and stability of synapses are unknown. We previously reported the identification of a 90 kDa synapse-associated protein, SAP90, that is localized at the presynaptic termini of inhibitory GABAergic synapses. SAP90 is a mosaic protein composed of three 90 amino acid residue repeats, an SH3 domain and a region homologous to guanylate kinases. SAP90 shares domain specific homology with a family of proteins involved in the assembly and possibly stability of sites of cell contact. These include the product of the lethal(1) discs-large-1 (dlgA) tumor suppressor gene and the zonula occludens proteins ZO-1, ZO-2. The further characterization of cDNA clones encoding components of synaptic junctions has lead to the identification of a 97 kDa protein, called SAP97, that exhibits a strong overall sequence similarity to SAP90. The present study was undertaken to determine the spatial distribution of SAP97, and to reveal further clues to the possible roles of these proteins in synapses. Light and immunoelectron microscopic analysis of the rat hippocampal formation revealed that SAP97 is localized in the presynaptic nerve termini of excitatory synapses. In other brain regions, SAP97 is found in and along bundles of unmyelinated axons. SAP97 is not restricted to the CNS, but is also present at the basal lateral membrane between a variety of epithelial cells. In cultured T84 cells, it is restricted to the cytoplasmic surface of the plasma membranes between adjacent cells, but not at the edges of cells lacking cell-cell contact suggesting a role for SAP97 in cell adhesion. These data suggest that members of the SAP90/SAP97 subfamily may be involved in the site specific assembly, stability or functions of membrane specialization at sites of cell-cell contact.

Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1.

The Drosophila discs large tumor suppressor protein, dlg, has been shown to regulate the growth of imaginal discs during embryogenesis [Woods, D. F. & Bryant, P. J. (1991) Cell 66, 451-464]. We cloned and sequenced the complete cDNA for a human B-lymphocyte 100-kDa protein that shares 60% amino acid identity with dlg. This human homologue of Drosophila discs large (hdlg) contains a C-terminal domain homologous to the known guanylate kinases, a src homology 3 region motif, and three dlg homology repeats. Two nonhomologous domains that can contain in-frame insertions result in at least four alternatively spliced isoforms of hdlg. Several hdlg RNA transcripts are widely distributed in human and murine tissues, and the protein is localized to regions of cell-cell contact. Protein 4.1, the defining member of a family that includes talin and merlin/schwannomin, has the same cellular localization as hdlg, and two sites within hdlg associate in vitro with the 30-kDa N-terminal domain of protein 4.1.

DLG1: chromosome location of the closest human homologue of the Drosophila discs large tumor suppressor gene.

The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.

The mouse homolog of the Drosophila discs large tumor suppressor gene maps to chromosome 16.

The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.

Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein.

The 9ORF1 gene encodes an adenovirus E4 region oncoprotein that requires a C-terminal region for transforming activity. Screening a lambdagt11 cDNA expression library with a 9ORF1 protein probe yielded a novel cellular PDZ domain-containing protein, 9BP-1, which binds to wild-type, but not a transformation-defective, C-terminal, mutant 9ORF1 protein. The fact that PDZ domains complex with specific sequences at the free C-terminal end of some proteins led to the recognition that the 9ORF1 C-terminal region contained such a consensus-binding motif. This discovery prompted investigations into whether the 9ORF1 protein associates with additional cellular proteins having PDZ domains. It was found that the 9ORF1 protein interacts directly, in vitro and in vivo, with the PDZ domain-containing protein hDlg/SAP97 (DLG), which is a mammalian homolog of the Drosophila discs large tumor suppressor protein and which also binds the adenomatous polyposis coli tumor suppressor protein. Of interest, in forming complexes, the 9ORF1 protein preferentially associated with the second PDZ domain of DLG, similar to adenomatous polyposis coli protein. Human T cell leukemia virus type 1 Tax and most oncogenic human papillomavirus E6 oncoproteins also possessed PDZ domain-binding motifs at their C termini and, significantly, human T cell leukemia virus type 1 Tax and human papillomavirus 18 E6 proteins bound DLG in vitro. Considering the requirement of the 9ORF1 C-terminal region in transformation, these findings suggest that interactions with the cellular factor DLG may contribute to the tumorigenic potentials of several different human virus oncoproteins.

Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes.

Human homologue of the Drosophila discs large tumor suppressor protein (hDlg) belongs to a newly discovered family of proteins termed MAGUKs that appear to have structural as well as signaling functions. Consistent with the multi-domain organization of MAGUKs, hDlg consists of three copies of the PDZ (PSD-95/Discs large/zO-1) domain, an SH3 motif, and a guanylate kinase-like domain. In addition, the hDlg contains an amino-terminal proline-rich domain that is absent in other MAGUKs. To explore the role of hDlg in cell signaling pathways, we used human T lymphocytes as a model system to investigate interaction of hDlg with known tyrosine kinases. In human T lymphocyte cell lines, binding properties of hDlg were studied by immunoprecipitation, immunoblotting, and immune complex kinase assays. Our results show that protein tyrosine kinase activity is associated with the immunoprecipitates of hDlg. Immunoblotting experiments revealed that the immunoprecipitates of hDlg contain p56lck, a member of the Src family of tyrosine kinases. The specificity of the interaction is demonstrated by the lack of p59fyn tyrosine kinase and phosphotidylinositol 3-kinase in the hDlg immunoprecipitates. Direct interaction between hDlg and p56lck is demonstrated using glutathione S-transferase fusion proteins of hDlg and recombinant p56lck expressed in the baculovirus-infected Sf9 cells. The p56lck binding site was localized within the amino-terminal segment of hDlg containing proline-rich domain. In addition, we show in vivo association of hDlg with Kv1.3 channel, which was expressed in T lymphocytes as an epitope-tagged protein using a vaccinia virus expression system. Taken together, these results provide the first evidence of a direct interaction between hDlg and p56lck tyrosine kinase and suggest a novel function of hDlg in coupling tyrosine kinase and voltage-gated potassium channel in T lymphocytes.

')