Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

1789

Name

DNMT3B

Synonymous

ICF|ICF1|M.HsaIIIB;DNA (cytosine-5-)-methyltransferase 3 beta;DNMT3B;DNA (cytosine-5-)-methyltransferase 3 beta

Definition

DNA (cytosine-5)-methyltransferase 3B|DNA MTase HsaIIIB|DNA methyltransferase HsaIIIB

Position

20q11.2

Gene type

protein-coding

Title

Abstract

Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis.

DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b-/- lymphomas, but not in Dnmt3b-/- pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b-/- lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.

Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis.

The drivers of abnormal DNA methylation in human cancers include widespread aberrant splicing of the DNMT3B gene, producing abnormal transcripts that encode truncated proteins that may act as dominant negative isoforms. To test whether reduced Dnmt3b dosage can alter tumorigenesis, we bred Dnmt3b(+/-) mice to Emicro-Myc mice, a mouse model susceptible to B-cell lymphomas. Emicro-Myc/Dnmt3b(+/-) mice showed a dramatic acceleration of lymphomagenesis, greater even than that observed in Emicro-Myc mice that express a truncated DNMT3B isoform found in human tumors, DNMT3B7. This finding indicates that Dnmt3b can act as a haploinsufficient tumor suppressor gene. Although reduction in both Dnmt3b dosage and expression of DNMT3B7 within the Emicro-Myc system had similar effects on tumorigenesis and DNA hypermethylation, different molecular mechanisms appear to underlie these changes. This study offers insight into how de novo DNA methyltransferases function as tumor suppressors and the sensitivity of Myc-induced lymphomas to DNA methylation.

')