Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

26038

Name

CHD5

Synonymous

CHD-5;chromodomain helicase DNA binding protein 5;CHD5;chromodomain helicase DNA binding protein 5

Definition

ATP-dependent helicase CHD5|chromodomain-helicase-DNA-binding protein 5

Position

1p36.31

Gene type

protein-coding

Title

Abstract

CHD5 is a tumor suppressor at human 1p36.

cancer gene discovery has relied extensively on analyzing tumors for gains and losses to reveal the location of oncogenes and tumor suppressor genes, respectively. Deletions of 1p36 are extremely common genetic lesions in human cancer, occurring in malignancies of epithelial, neural, and hematopoietic origin. Although this suggests that 1p36 harbors a gene that drives tumorigenesis when inactivated, the identity of this tumor suppressor has remained elusive. Here we use chromosome engineering to generate mouse models with gain and loss of a region corresponding to human 1p36. This approach functionally identifies chromodomain helicase DNA binding domain 5 (Chd5) as a tumor suppressor that controls proliferation, apoptosis, and senescence via the p19(Arf)/p53 pathway. We demonstrate that Chd5 functions as a tumor suppressor in vivo and implicate deletion of CHD5 in human cancer. Identification of this tumor suppressor provides new avenues for exploring innovative clinical interventions for cancer.

The quest for the 1p36 tumor suppressor.

Genomic analyses of late-stage human cancers have uncovered deletions encompassing 1p36, thereby providing an extensive body of literature supporting the idea that a potent tumor suppressor resides in this interval. Although several genes have been proposed as 1p36 candidate tumor suppressors, convincing evidence that their encoded products protect from cancer has been scanty. A recent functional study identified chromodomain helicase DNA-binding protein 5 (CHD5) as a novel tumor suppressor mapping to 1p36. Here, we discuss evidence supporting the tumor-suppressive role of CHD5. Together, these findings suggest that strategies designed to enhance CHD5 activity could provide novel approaches for treating a broad range of human malignancies.

CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas.

BACKGROUND: Neuroblastomas are characterized by hemizygous 1p deletions, suggesting that a tumor suppressor gene resides in this region. We previously mapped the smallest region of consistent deletion to a 2-Mb region of 1p36.31 that encodes 23 genes. Based on mutation analysis, expression pattern, and putative function, we identified CHD5 as the best tumor suppressor gene candidate. METHODS: We determined the methylation status of the CHD5 gene promoter in NLF and IMR5 (with 1p deletion) and SK-N-SH and SK-N-FI neuroblastoma cell lines using methylation-specific sequencing and measured CHD5 mRNA expression by reverse transcription polymerase chain reaction in cells treated with or without 5-aza-2-deoxycytidine, an inhibitor of DNA methylation. We transfected the cells with CHD5 and antisense (AS) CHD5 DNA to assess the effect of CHD5 overexpression and suppression, respectively, on colony formation in soft agar and growth of xenograft tumors in athymic mice. We also analyzed the association of CDH5 expression with outcomes of 99 neuroblastoma patients. Statistical tests were two-sided. RESULTS: CHD5 expression was very low or absent in neuroblastoma cell lines. The CHD5 promoter was highly methylated in NLF and IMR5 lines, and CHD5 expression increased after treatment with 5-aza-2-deoxycytidine. Clonogenicity and tumor growth were abrogated in NLF and IMR5 cells overexpressing CHD5 compared with antisense CHD5 (clonogenicity: mean no. of colonies per plate, NLF-CHD5, 43 colonies, 95% confidence interval [CI] = 35 to 51 colonies, vs NLF-CHD5-AS, 74 colonies, 95% CI = 62 to 86 colonies, P < .001; IMR5-CHD5, 11 colonies, 95% CI = 2 to 20 colonies, vs IMR5-CHD5-AS, 39 colonies, 95% CI = 17 to 60 colonies, P = .01; tumor growth, n = 10 mice per group: mean tumor size at 5 weeks, NLF-CHD5, 0.36 cm(3), 95% CI = 0.17 to 0.44 cm(3), vs NLF-CHD5-AS, 1.65 cm(3), 95% CI = 0.83 to 2.46 cm(3), P = .002; IMR5-CHD5, 0.28 cm(3), 95% CI = 0.18 to 0.38 cm(3), vs IMR5-CHD5-AS, 1.15 cm(3), 95% CI = 0.43 to 1.87 cm(3); P = .01). High CHD5 expression was strongly associated with favorable event-free and overall survival (P < .001), even after correction for MYCN amplification and 1p deletion (P = .027). CONCLUSIONS: CHD5 is the strongest candidate tumor suppressor gene that is deleted from 1p36.31 in neuroblastomas, and inactivation of the second allele may occur by an epigenetic mechanism.

Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer.

Chromodomain, helicase, DNA binding 5 (CHD5) is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04). The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

CHD5 is down-regulated through promoter hypermethylation in gastric cancer.

BACKGROUND: Nonhistone chromosomal proteins in concert with histones play important roles in the replication and repair of DNA and in the regulation of gene expression. The deregulation of these proteins can contribute to the development of a variety of diseases such as cancer. As a nonhistone chromosomal protein, chromodomain helicase DNA binding protein 5 (CHD5) has recently been identified as the product of a novel tumor suppressor gene (TSG), promoting the transcription of p19ink4a and p16arf. The inactivation of CHD5 was achieved partly through genetic deletion since it is located in 1p36, a region frequently deleted in human tumors. In this study, we aim to study the involvement of CHD5 in gastric cancer, the second most common cancer worldwide. METHODS: CHD5 expression in a panel of gastric cancer cells were determined by quantitative RT-PCR. The methylation of CHD5 was evaluated by methylation specific PCR and bisulfite genome sequencing. The effect of CHD5 on growth of gastric cancer cells was tested by colony formation assay. RESULTS: CHD5 expression was down-regulated in all of gastric cancer cell lines used (100%, 7/7) and significantly restored after pharmacological demethylation. Methylation of CHD5 promoter was detected in all of seven gastric cancer cell lines and in the majority of primary gastric carcinoma tissues examined (73%, 11/15). Finally, ectopic expression of CHD5 in gastric cancer cells led to a significant growth inhibition. CONCLUSION: CHD5 was a TSG epigenetically down-regulated in gastric cancer.

The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma.

Chromodomain helicase DNA-binding protein 5 (CHD5) has been found to be a candidate tumor suppressor gene (TSG) in malignant neural tumors. In mice heterozygous for chd5 deficiency, the first tumor observed was pathological squamous cell carcinoma. More than 95% of primary laryngeal cancer is squamous cell carcinoma. Thus, we explored the expression of CHD5 in 65 patients with laryngeal squamous cell carcinoma (LSCC) using real-time PCR, immunohistochemistry and Western blotting. DNA methylation was detected using bisulfate-specific sequencing. The potential function of CHD5 was determined using MTT, apoptosis and transwell migration assays in CHD5-transfected Hep-2 cells. Our results revealed that the mRNA and protein expression levels of CHD5 in LSCC tissues were significantly lower than those in clear surgical margin tissues (p<0.05), and there is a significant correlation between the mRNA and protein expression levels of CHD5 (p<0.01). In addition, there were significant differences in CHD5 mRNA and protein levels with respect to the patients clinical stage (p<0.05). Aberrant methylation of the CHD5 promoter was frequently found in the Hep-2 cell line and LSCC tumor tissues, especially tumor tissues from advanced TNM (p<0.05) or older patients (p<0.05). Finally, ectopic expression of CHD5 in laryngeal cancer cells led to significant inhibition of growth and invasiveness. Our data suggest that CHD5 is a tumor suppressor gene that is epigenetically downregulated in LSCC.

')