Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

27122

Name

DKK3

Synonymous

REIC|RIG;dickkopf WNT signaling pathway inhibitor 3;DKK3;dickkopf WNT signaling pathway inhibitor 3

Definition

RIG-like 5-6|RIG-like 7-1|dickkopf 3 homolog|dickkopf homolog 3|dickkopf-3|dickkopf-related protein 3|dkk-3|hDkk-3|regulated in glioma

Position

11p15.2

Gene type

protein-coding

Title

Abstract

Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours.

INTRODUCTION: expression of the putative Wnt signalling inhibitor Dickkopf-3 (DKK3) is frequently lost in human cancer tissues because of aberrant 5-cytosine methylation within the DKK3 gene promoter. Since other Wnt signalling inhibitors have been reported to be targets of epigenetic inactivation in human breast cancer, we questioned if DKK3 expression is also epigenetically silenced during breast carcinogenesis and therefore might contribute to oncogenic Wnt signalling commonly found in this disease. METHODS: DKK3 mRNA expression and DKK3 promoter methylation were determined by RT-PCR, realtime PCR and methylation-specific PCR in breast cell lines (n = 9), normal breast tissues (n = 19) and primary breast carcinomas (n = 150), respectively. In vitro DNA demethylation was performed by incubating breast cell lines with 5-aza-2-deoxycytidine and trichostatin A. DKK3 protein expression was analysed by immunohistochemistry in breast carcinomas (n = 16) and normal breast tissues (n = 8). Methylation data were statistically correlated with clinical patient characteristics. All statistical evaluations were performed with SPSS 14.0 software. RESULTS: DKK3 mRNA was downregulated in 71% (five of seven) of breast cancer cell lines and in 68% of primary breast carcinomas (27 of 40) compared with benign cell lines and normal breast tissues, respectively. A DNA demethylating treatment of breast cell lines resulted in strong induction of DKK3 mRNA expression. In tumourous breast tissues, DKK3 mRNA downregulation was significantly associated with DKK3 promoter methylation (p < 0.001). Of the breast carcinomas, 61% (92 of 150) revealed a methylated DKK3 promoter, whereas 39% (58 of 150) retained an unmethylated promoter. Loss of DKK3 expression in association with DKK3 promoter methylation (p = 0.001) was also confirmed at the protein level (p < 0.001). In bivariate analysis, DKK3 promoter methylation was not associated with investigated clinicopathological parameters except patient age (p = 0.007). CONCLUSIONS: DKK3 mRNA expression and consequently DKK3 protein expression become frequently downregulated during human breast cancer development due to aberrant methylation of the DKK3 promoter. Since DKK3 is thought to negatively regulate oncogenic Wnt signalling, DKK3 may be a potential tumour suppressor gene in normal breast tissue.

MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma.

The MYCN oncogene is frequently amplified in neuroblastoma. It is one of the most consistent markers of bad prognosis for this disease. Dickkopf-3 (DKK3) is a secreted protein of the DKK family of Wnt regulators. It functions as a tumor suppressor in a range of cancers, including neuroblastoma. MYCN was recently found to downregulate DKK3 mRNA. In this study, we show that MYCN knockdown in MYCN-amplified (MNA) neuroblastoma cell lines increases secretion of endogenous DKK3 to the culture media. microRNAs (miRNAs) are approximately 20 nt long single-stranded RNA molecules that downregulate messenger RNAs by targeting the 3 untranslated region (3UTR). Many miRNAs regulate genes involved in the pathogenesis of cancer and are extensively deregulated in different tumors. Using miRNA target prediction software, we found several MYCN-regulated miRNAs that could target the 3UTR sequence of DKK3, including mir-92a, mir-92b and let-7e. Luciferase expression from a reporter vector containing the DKK3-3UTR was decreased when this construct was cotransfected with mir-92a, mir-92b or let-7e in HEK293 cells. mutation of the mir-92 seed sequence in the 3UTR completely rescued the observed decrease in reporter expression when cotransfected with mir-92a and mir-92b. Antagomir and miRNA-mimic transfections in neuroblastoma cell lines confirmed that DKK3 secretion to the culture media is regulated by mir-92. Consistent with reports from other cancers, we found DKK3 to be expressed in the endothelium of primary neuroblastoma samples and to be absent in tumors with MYCN amplification. Our data demonstrate that MYCN-regulated miRNAs are able to modulate the expression of the tumor suppressor DKK3 in neuroblastoma.

Tumor suppressor REIC/Dkk-3 interacts with the dynein light chain, Tctex-1.

REIC/Dkk-3 is a member of the Dickkopf family proteins known as Wnt-antagonists, and REIC/Dkk-3 expression is downregulated in a broad range of cancer types. REIC/Dkk-3 acts as a tumor suppressor in multiple cancer cell lines by inducing apoptosis through endoplasmic reticulum (ER) stress signaling. However, the intracellular interaction partners of REIC/Dkk-3 have not been fully elucidated. By employing yeast two-hybrid screening, we identified the human dynein light chain, Tctex-1, as a novel interaction partner of REIC/Dkk-3. We further disclosed that the interaction involves the 136-157 amino acid region of REIC/Dkk-3 by using the mammalian two-hybrid system. Interestingly, this binding region of REIC/Dkk-3 with Tctex-1 contains an amino acid sequence motif [-E-X-G-R-R-X-H-] which was previously reported as the Tctex-1 binding domain of dynein intermediate chain (DIC). Immunocytochemistry demonstrated that both REIC/Dkk-3 and Tctex-1 were localized around the ER of human fibroblasts, and the similar distribution pattern of the proteins suggests that their interaction occurs around the ER. This is the first study showing the interaction of a Dickkopf family protein with a dynein motor complex protein. The link between REIC/Dkk-3 and Tctex-1 may be of significance for understanding the molecular functions of the proteins in ER stress signaling and intracellular dynein motor dynamics, respectively.

')