General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 406922 |
Name | MIR133A1 |
Synonymous | MIRN133A1;microRNA 133a-1;MIR133A1;microRNA 133a-1 |
Definition | hsa-mir-133a-1 |
Position | 18q11.2 |
Gene type | ncRNA |
Title |
Abstract |
Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. | OBJECTIVE: Our previous study demonstrated that fascin homolog 1 (FSCN1) might have an oncogenic function in bladder cancer (BC) and that its expression was regulated by specific microRNAs (miRNAs). Recently, LIM and SH3 protein 1 (LASP1) as well as FSCN1 have been reported as actin filament bundling proteins in the same complexes attached to the inner surfaces of cell membranes. We hypothesize that LASP1 as well as FSCN1 have an oncogenic function and that is regulated by miRNAs targeting LASP1 mRNA. METHODS: The expression levels of LASP1 mRNA in 86 clinical samples were evaluated by real-time RT-PCR. LASP1-knockdown BC cell lines were transfected by siRNA in order to examine cellular viability by XTT assay, wound healing assay, and matrigel invasion assay. We employed web-based software in order to search for candidate miRNAs targeting LASP1 mRNA, and we focused on miR-1, miR-133a, miR-145, and miR-218. The luciferase reporter assay was used to confirm the actual binding sites between the miRNAs and LASP1 mRNA. RESULTS: Real-time RT-PCR showed that LASP1 mRNA expression was higher in 76 clinical BC specimens than in 10 normal bladder epitheliums (P < 0.05). Loss-of-function studies using si-LASP1-transfected BC cell lines demonstrated significant cell viability inhibition (P < 0.0005), cell migration inhibition (P < 0.0001), and a decrease in the number of invading cells (P < 0.005) in the transfectants compared with the controls. Transient transfection of three miRNAs (miR-1, miR-133a, and miR-218), which were predicted as the miRNAs targeting LASP1 mRNA, repressed the expression levels of mRNA and protein levels of LASP1. The luciferase reporter assay demonstrated that the luminescence intensity was significantly decreased in miR-1, miR-133a, and miR-218 transfectants (P < 0.05), suggesting that these miRNAs have actual target sites in the 3 untranslated region of LASP1 mRNA. Furthermore, significant cell viability inhibitions occurred in miR-218, miR-1, and miR-133a transfectants (P < 0.001). CONCLUSION: Our data indicate that LASP1 may have an oncogenic function and that it might be regulated by miR-1, miR-133a, and miR-218, which may function as tumor suppressive miRNAs in BC. |
Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133alpha in head and neck squamous cell carcinoma (HNSCC). | The glutathione S-transferase P1 (GSTP1) protein plays several critical roles in both normal and neoplastic cells, including phase II xenobiotic metabolism, stress responses, signaling and apoptosis. Overexpression of GSTP1 has been observed in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). However, the role of GSTP1 in HNSCC is not well understood. We investigated the role of GSTP1 in two HNSCC cell lines, HSC3 and SAS. Silencing of GSTP1 revealed that cancer cell proliferation was significantly decreased in both cell lines. In addition, the frequency of apoptotic cells increased following si-GSTP1 transfection of HSC3 and SAS cell lines. Growing evidence suggests that microRNAs (miRNAs) negatively regulate gene expression and can function as oncogenes or tumor suppressors in human cancer. Based on the results of web-based searches, miR-133alpha is a candidate miRNA targeting GSTP1. Down-regulation of miR-133alpha has been reported in many types of human cancer, including HNSCC. Transient transfection of miR-133alpha repressed the expression of GSTP1 at both the mRNA and protein levels. The signal from a luciferase reporter was significantly decreased at one miR-133alpha target site at the 3UTR of GSTP1, suggesting that miR-133alpha directly regulates GSTP1. Our data indicate that GSTP1 may have an oncogenic function and may be regulated by miR-133alpha, a tumor suppressive miRNA in HNSCC. The identification of a novel oncogenic pathway could provide new insights into potential mechanisms of HNSCC carcinogenesis. |
Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. | Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis. |
Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. | Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis. |