Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

406983

Name

MIR200A

Synonymous

MIRN200A;microRNA 200a;MIR200A;microRNA 200a

Definition

hsa-mir-200a

Position

1p36.33

Gene type

ncRNA

Title

Abstract

Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway.

Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of beta-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target beta-catenin mRNA, thereby inhibiting its translation and blocking Wnt/beta-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of beta-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/beta-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas.

Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

microRNAs (miRNAs) are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1.

The microRNA-200 (miR-200) family is part of a gene expression signature that predicts poor prognosis in lung cancer patients. In a mouse model of K-ras/p53-mutant lung adenocarcinoma, miR-200 levels are suppressed in metastasis-prone tumor cells, and forced miR-200 expression inhibits tumor growth and metastasis, but the miR-200 target genes that drive lung tumorigenesis have not been fully elucidated. Here, we scanned the genome for putative miR-200 binding sites and found them in the 3-untranslated region (3-UTR) of 35 genes that are amplified in human cancer. Mining of a database of resected human lung adenocarcinomas revealed that the levels of one of these genes, Flt1/VEGFR1, correlate inversely with duration of survival. Forced miR-200 expression suppressed Flt1 levels in metastasis-prone lung adenocarcinoma cells derived from K-ras/p53-mutant mice, and negatively regulated the Flt1 3-UTR in reporter assays. cancer-associated fibroblasts (CAFs) isolated from murine lung adenocarcinomas secreted abundant VEGF and enhanced tumor cell invasion in coculture studies. CAF-induced tumor cell invasion was abrogated by VEGF neutralization or Flt1 knockdown in tumor cells. Flt1 knockdown decreased the growth and metastasis of tumor cells in syngeneic mice. We conclude that miR-200 suppresses lung tumorigenesis by targeting Flt1.

Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma.

In a previous study, we found that microRNA (miRNA)-200a suppresses Wnt/beta-catenin signaling by interacting with beta-catenin, thereby inhibiting migration, invasion and proliferation. However, the mechanism involved in this suppression remains unclear. In the present study, we investigated the underlying mechanism of miR-200a regulation of epithelial-mesenchymal transition (EMT) in gastric carcinoma cells, and confirmed the tumor suppressor role of miR-200a in vivo. The expressions of miRNA-200a, -200b and -200c, identified by fluorescent in situ hybridization, were downregulated and inversely correlated with WHO grades of gastric adenocarcinoma (GA). The expression of the potential miR-200a target genes ZEB1 and ZEB2 was detected immunohistochemically. These examinations used the same tissue microarrays to analyze the relationships between miR-200a and potential target genes. The expression of miR-200a and ZEB1/ZEB2 in the same GA tissue microarrays was inversely related. Restored miR-200a expression inhibited tumor growth in nude mice harboring subcutaneous SGC7901 xenografts. The expression of N-cadherin, beta-catenin, Twist1 and Snail2 decreased, and E-cadherin levels increased, when miR-200a was elevated, as tested by fluorescence microscopy and immunohistochemistry. Similar results were observed in vivo. We found upregulated miR-200a expression to increase E-cadherin and suppress the Wnt/beta-catenin pathway by targeting ZEB1 and ZEB2 in GA, thus delaying tumor growth in vivo. The effect of miR-200a on Wnt/beta-catenin signaling may provide a therapeutic target against EMT.

')