Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

406997

Name

MIR215

Synonymous

MIRN215|miRNA215|mir-215;microRNA 215;MIR215;microRNA 215

Definition

hsa-mir-215

Position

1q41

Gene type

ncRNA

Title

Abstract

Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215.

Cell cycle arrest in response to DNA damage is an important antitumorigenic mechanism. microRNAs (miRNAs) were recently shown to play key regulatory roles in cell cycle progression. For example, miR-34a is induced in response to p53 activation and mediates G(1) arrest by down-regulating multiple cell cycle-related transcripts. Here we show that genotoxic stress promotes the p53-dependent up-regulation of the homologous miRNAs miR-192 and miR-215. Like miR-34a, activation of miR-192/215 induces cell cycle arrest, suggesting that multiple miRNA families operate in the p53 network. Furthermore, we define a downstream gene expression signature for miR-192/215 expression, which includes a number of transcripts that regulate G(1) and G(2) checkpoints. Of these transcripts, 18 transcripts are direct targets of miR-192/215, and the observed cell cycle arrest likely results from a cooperative effect among the modulations of these genes by the miRNAs. Our results showing a role for miR-192/215 in cell proliferation combined with recent observations that these miRNAs are underexpressed in primary cancers support the idea that miR-192 and miR-215 function as tumor suppressors.

Identification and functional screening of microRNAs highly deregulated in colorectal cancer.

microRNAs (miRNAs) constitute a robust regulatory network with post-transcriptional regulatory efficiency for almost one half of human coding genes, including oncogenes and tumour suppressors. We determined the expression profile of 667 miRNAs in colorectal cancer (CRC) tissues and paired non-tumoural tissues and identified 42 differentially expressed miRNAs. We chose miR-215, miR-375, miR-378, miR-422a and miR-135b for further validation on an independent cohort of 125 clinically characterized CRC patients and for in vitro analyses. MiR-215, miR-375, miR-378 and miR-422a were significantly decreased, whereas miR-135b was increased in CRC tumour tissues. Levels of miR-215 and miR-422a correlated with clinical stage. MiR-135b was associated with higher pre-operative serum levels of CEA and CA19-9. In vitro analyses showed that ectopic expression of miR-215 decreases viability and migration, increases apoptosis and promotes cell cycle arrest in DLD-1 and HCT-116 colon cancer cell lines. Similarly, overexpression of miR-375 and inhibition of miR-135b led to decreased viability. Finally, restoration of miR-378, miR-422a and miR-375 inhibited G1/S transition. These findings indicate that miR-378, miR-375, miR-422a and miR-215 play an important role in CRC as tumour suppressors, whereas miR-135b functions as an oncogene; both groups of miRNA contribute to CRC pathogenesis.

')