Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

407017

Name

MIR26B

Synonymous

MIRN26B|hsa-mir-26b|miR-26b;microRNA 26b;MIR26B;microRNA 26b

Definition

-

Position

2q35

Gene type

ncRNA

Title

Abstract

Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

microRNAs (miRNAs) are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

Role of microRNA-26b in glioma development and its mediated regulation on EphA2.

BACKGROUND: microRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. Low level expression of miR-26b has been found in glioma cells. However, its underlying mechanism of action has not been determined. METHODOLOGY/PRINCIPAL FINDINGS: Real-time PCR was employed to measure the expression level of miR-26b in glioma patients and cells. The level of miR-26b was inversely correlated with the grade of glioma. Ectopic expression of miR-26b inhibited the proliferation, migration and invasion of human glioma cells. A binding site for miR-26b was identified in the 3UTR of EphA2. Over-expression of miR-26b in glioma cells repressed the endogenous level of EphA2 protein. Vasculogenic mimicry (VM) experiments were performed to further confirm the effects of miR-26b on the regulation of EphA2, and the results showed that miR-26b inhibited the VM processes which regulated by EphA2. SIGNIFICANCE: This study demonstrated that miR-26b may act as a tumor suppressor in glioma and it directly regulates EphA2 expression. EphA2 is a direct target of miR-26b, and the down-regulation of EphA2 mediated by miR-26b is dependent on the binding of miR-26b to a specific response element of microRNA in the 3UTR region of EphA2 mRNA.

Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells.

A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt). However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD) levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116). In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.

')