General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 5629 |
Name | PROX1 |
Synonymous | -;prospero homeobox 1;PROX1;prospero homeobox 1 |
Definition | homeobox prospero-like protein PROX1|prospero homeobox protein 1|prospero-related homeobox 1 |
Position | 1q41 |
Gene type | protein-coding |
Title |
Abstract |
Mutations and aberrant DNA methylation of the PROX1 gene in hematologic malignancies. | The homeobox gene PROX1 is related to the Drosophila prospero gene, which is expressed in the developing central nervous system and lens-secreting cone cells. We found that the PROX1 gene had missense and nonsense mutations in 4 of 29 hematologic cell lines analyzed. Decreased mRNA expression was also observed in half of these cell lines by RT-PCR. The restoration of PROX1 gene expression after treatment with the demethylating agent 5-aza-2-deoxycytidine, as well as bisulfite sequencing analysis, indicated that gene silencing is caused by DNA hypermethylation at intron 1. Such hypermethylation was also seen in primary lymphomas (56.3%, 18/32) in a tumor-specific manner. These findings indicate that the profile of the PROX1 gene corresponds to that of a candidate tumor-suppressor gene. |
Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. | BACKGROUND/AIMS: Functional deletion of the transcription factor Prospero-related homeobox 1 (PROX1) causes abnormal cellular proliferation via down-regulated expression of the cell cycle inhibitors p27(kip1) and p57(kip2). Hence, we examined whether inactivation of the PROX1 gene can be demonstrated in malignant tumors of the bilary system. METHODS: Seventeen paraffin-embedded specimens of carcinomas of the bilary system were subjected to loss-of-heterozygosity (LOH) and microsatellite instability analyses, methylation-specific polymerase-chain reaction (MSP) and immunohistochemical detection of PROX1 protein in tumor sections. RESULTS: The marker D1S213 located close to PROX1 at 1q41 indicated LOH events in 50% of informative tumor samples analyzed. In contrast to intense cytoplasmic and nuclear staining of normal bile duct epithelia, PROX1 protein was absent or drastically reduced in 10 of 16 (63%) carcinomas. MSP revealed significant PROX1 promoter hypermethylation in 8 out of 17 clinical cases (47%). A correlation between clinicopathological characteristics and reduced PROX1 expression was not observed. CONCLUSIONS: We demonstrate that mechanisms like genomic deletions and hypermethylation, which are prototypic for the inactivation of tumor suppressor genes, inactivate PROX1 in carcinomas of the bilary system. Our findings prompt the elucidation of molecular pathways involved in PROX1 dependent misregulation of differentiation and proliferation processes in bilary tract carcinomas. |