Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

641

Name

BLM

Synonymous

BS|RECQ2|RECQL2|RECQL3;Bloom syndrome, RecQ helicase-like;BLM;Bloom syndrome, RecQ helicase-like

Definition

Bloom syndrome protein|DNA helicase, RecQ-like type 2|recQ protein-like 3

Position

15q26.1

Gene type

protein-coding

Title

Abstract

Small scale genetic alterations contribute to increased mutability at the X-linked Hprt locus in vivo in Blm hypomorphic mice.

BLM, the gene mutated in Bloom syndrome (BS), encodes an ATP-dependent RecQ DNA helicase that is involved in the resolution of Holliday junctions, in the suppression of crossovers and in the management of damaged replication forks. Cells from BS patients have a characteristically high level of sister chromatid exchanges (SCEs), and increased chromosomal aberrations. Fibroblasts and lymphocytes of BS patients also exhibit increased mutation frequency at the X-linked reporter gene HPRT, suggesting that BLM also plays a role in preventing small scale genomic rearrangements. However, the nature of such small scale alterations has not been well characterized. Here we report the characterization of Hprt mutations in vivo in Blm hypomorphic mice, Blm(tm1Ches)/Blm(tm3Brd). We found that the frequency of Hprt mutants was increased about 6-fold in the Blm(tm1Ches)/Blm(tm3Brd) mice when compared to Blm(tm3Brd) heterozygous mice or wildtype mice. Molecular characterization of Hprt gene in the mutant clones indicates that many of the mutations were caused by deletions that range from several base pairs to several thousand base pairs. While deletions in BLM-proficient somatic cells are often shown to be mediated by direct repeats, all three deletion junctions in Hprt of Blm(tm1Ches)/Blm(tm3Brd) mice were flanked by inverted repeats, suggesting that secondary structures formed during DNA replication, when resolved improperly, may lead to deletions. In addition, single base pair substitution and insertion/deletion were also detected in the mutant clones. Taken together, our results indicated that BLM function is important in preventing small scale genetic alterations. Thus, both large scale and small scale genetic alterations are elevated when BLM is reduced, which may contribute to loss of function of tumor suppressor genes and subsequent tumorigenesis.

Time to bloom.

Bloom Syndrome (BS) is an autosomal recessive disorder due to mutation in Bloom helicase (referred in literature either as BLM helicase or BLM). Patients with BS are predisposed to almost all forms of cancer. BS patients are even today diagnosed in the clinics by hyper-recombination phenotype that is manifested by high rates of Sister Chromatid Exchange. The function of BLM as a helicase and its role during the regulation of homologous recombination (HR) is well characterized. However in the last few years the role of BLM as a DNA damage sensor has been revealed. For example, it has been demonstrated that BLM can stimulate the ATPase and chromatin remodeling activities of RAD54 in vitro. This indicates that BLM may increase the accessibility of the sensor proteins that recognize the lesion. Over the years evidence has accumulated that BLM is one of the earliest proteins that accumulates at the site of the lesion. Finally BLM also acts like a "molecular node" by integrating the upstream signals and acting as a bridge between the transducer and effector proteins (which again includes BLM itself), which in turn repair the DNA damage. Hence BLM seems to be a protein involved in multiple functions - all of which may together contribute to its reported role as a "caretaker tumor suppressor". In this review the recent literature documenting the upstream BLM functions has been elucidated and future directions indicated.

')