General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 6656 |
Name | SOX1 |
Synonymous | -;SRY (sex determining region Y)-box 1;SOX1;SRY (sex determining region Y)-box 1 |
Definition | SRY-related HMG-box gene 1|transcription factor SOX-1 |
Position | 13q34 |
Gene type | protein-coding |
Title |
Abstract |
SOX1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma. | Oncogenic activation of the Wnt/beta-catenin signaling pathway is common in hepatocellular carcinoma (HCC). Our recent studies have demonstrated that SRY (sex determining region Y)-box 1 (SOX1) and secreted frizzled-related proteins are concomitantly promoter-hypermethylated, and this might lead to abnormal activation of the Wnt signaling pathway in HCC. SOX1 encodes a transcription factor involved in the regulation of embryonic development and cell fate determination. However, the expression and functional role of SOX1 in HCC remains unclear. In this study, we confirmed via quantitative methylation-specific polymerase chain reaction that SOX1 was frequently downregulated through promoter hypermethylation in HCC cells and tissues. Overexpression of SOX1 by a constitutive or inducible approach could suppress cell proliferation, colony formation, and invasion ability in HCC cell lines, as well as tumor growth in nonobese diabetic/severe combined immunodeficiency mice. Conversely, knockdown of SOX1 by withdrawal of doxycycline could partially restore cell proliferation and colony formation in HCC cells. We used a T cell factor (TCF)-responsive luciferase reporter assay and western blot analysis to prove that SOX1 could regulate TCF-responsive transcriptional activity and inhibit the expression of Wnt downstream genes. Furthermore, we used glutathione S-transferase pull-down, co-immunoprecipitation, and confocal microscopy to demonstrate that SOX1 could interact with beta-catenin but not with the beta-catenin/TCF complex. Moreover, restoration of the expression of SOX1 induces significant cellular senescence in Hep3B cells. CONCLUSION: Our data show that a developmental gene, SOX1, may function as a tumor suppressor by interfering with Wnt/beta-catenin signaling in the development of HCC. |
SOX1 suppresses cell growth and invasion in cervical cancer. | OBJECTIVE: Abnormal activation of the Wnt/beta-catenin signaling pathway is common in human cancers, including cervical cancer. Many papers have shown that SRY (sex-determining region Y)-box (SOX) family genes serve as either tumor suppressor genes (TSGs) or oncogenes by regulating the Wnt signaling pathway in different cancers. We have demonstrated recently that epigenetic silencing of SOX1 gene occurs frequently in cervical cancer. However, the possible role of SOX1 in cervical cancer remains unclear. This study aimed to explore whether SOX1 functions as a TSG in cervical cancer. METHODS: We established a constitutive and an inducible system that overexpressed SOX1 and monitored its function by in vitro experiments. To confirm SOX1 function, we manipulated SOX1 using an inducible expression approach in cell lines. The effect of SOX1 on tumorigenesis was also analyzed in animal models. RESULTS: Overexpression of SOX1 inhibited cell proliferation, anchorage independency, and invasion in vitro. SOX1 suppressed tumor growth in nonobese diabetic/severe combined immunodeficiency mice. After induction of SOX1 by doxycycline (DOX), SOX1 inhibited cell growth and invasion in the inducible system. Repression of SOX1 by withdrawal of DOX partially reversed the malignant phenotype in cervical cells. SOX1 inhibited TCF-dependent transcriptional activity and the Wnt target genes. SOX1 also repressed the invasive phenotype by regulating the expression of invasion-related genes. CONCLUSIONS: Taken together, these data suggest that SOX1 can function as a tumor suppressor partly by interfering with Wnt/beta-catenin signaling in cervical cancer. |