Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

693123

Name

MIR449B

Synonymous

MIRN449B;microRNA 449b;MIR449B;microRNA 449b

Definition

hsa-mir-449b

Position

5q11.2

Gene type

ncRNA

Title

Abstract

miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A.

The Rb-E2F pathway drives cell cycle progression and cell proliferation, and the molecular strategies safeguarding its activity are not fully understood. Here we report that E2F1 directly transactivates miR-449a/b. miR-449a/b targets and inhibits oncogenic CDK6 and CDC25A, resulting in pRb dephosphorylation and cell cycle arrest at G1 phase, revealing a negative feedback regulation of the pRb-E2F1 pathway. Moreover, miR-449a/b expression in cancer cells is epigenetically repressed through histone H3 Lys27 trimethylation, and epigenetic drug treatment targeting histone methylation results in strong induction of miR-449a/b. Our study reveals a tumor suppressor function of miR-449a/b through regulating Rb/E2F1 activity, and suggests that escape from this regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer.

Dephosphorylation of nucleophosmin by PP1beta facilitates pRB binding and consequent E2F1-dependent DNA repair.

Nucleophosmin (NPM) is an important phosphoprotein with pleiotropic functions in various cellular processes. Although phosphorylation has been postulated as an important functional determinant, possible regulatory roles of this modification on NPM are not fully characterized. Here, we find that NPM is dephosphorylated on various threonine residues (Thr199 and Thr234/237) in response to UV-induced DNA damage. Further experiments indicate that the serine/threonine protein phosphatase PP1beta is a physiological NPM phosphatase under both the genotoxic stress and growth conditions. As a consequence, NPM in its hypophosphorylated state facilitates DNA repair. Finally, our results suggest that one possible mechanism of this protective response lies in enhanced NPM-retinoblastoma tumor suppressor protein (pRB) interaction, leading to the relief of the repressive pRB-E2F1 circuitry and the consequent transcriptional activation of E2F1 and several downstream DNA repair genes. Thus, this study unveils a key phosphatase of NPM and highlights a novel mechanism by which the PP1beta-NPM pathway contributes to cellular DNA damage response.

')