Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

7421

Name

VDR

Synonymous

NR1I1|PPP1R163;vitamin D (1,25- dihydroxyvitamin D3) receptor;VDR;vitamin D (1,25- dihydroxyvitamin D3) receptor

Definition

1,25-dihydroxyvitamin D3 receptor|nuclear receptor subfamily 1 group I member 1|protein phosphatase 1, regulatory subunit 163|vitamin D nuclear receptor variant 1|vitamin D3 receptor

Position

12q13.11

Gene type

protein-coding

Title

Abstract

The vitamin D receptor: a tumor suppressor in skin.

Cutaneous malignancies including melanomas and non melanoma skin cancers (NMSC) are the most common types of cancer, occurring at a rate of over 1 million per year in the United States. The major cell in the epidermis, the keratinocyte, not only produces vitamin D but contains the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and expresses the receptor for this metabolite, the vitamin D receptor (VDR), allowing the cell to respond to the 1,25(OH)2D that it produces. In vitro, 1,25(OH)2D stimulates the differentiation and inhibits the proliferation of these cells and so would be expected to be tumor suppressive. However, epidemiologic evidence demonstrating a negative relationship between circulating levels of the substrate for CYP27B1, 25OHD, and the incidence of these malignancies is mixed, raising the question whether vitamin D is protective in the in vivo setting. UV radiation (UV), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. This complicates conclusions reached from epidemiologic studies in that UVB is associated with higher 25OHD levels as well as increased incidence of cutaneous malignancies. Based on our own data and that reported in the literature we hypothesize that vitamin D signaling in the skin suppresses UVR induced epidermal tumor formation. In this chapter we will first discuss recent data regarding potential mechanisms by which vitamin D signaling suppresses tumor formation, then focus on three general mechanisms that mediate tumor suppression by VDR in the skin: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).

')