General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 864 |
Name | RUNX3 |
Synonymous | AML2|CBFA3|PEBP2aC;runt-related transcription factor 3;RUNX3;runt-related transcription factor 3 |
Definition | CBF-alpha-3|PEA2 alpha C|PEA2-alpha C|PEBP2 alpha C|PEBP2-alpha C|SL3-3 enhancer factor 1 alpha C subunit|SL3/AKV core-binding factor alpha C subunit|acute myeloid leukemia 2 protein|acute myeloid leukemia gene 2|core-binding factor subunit alpha-3|core-b |
Position | 1p36 |
Gene type | protein-coding |
Title |
Abstract |
Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. | We reported recently that the silencing of RUNX3 is causally related to gastric cancer in humans. Here we report that in three of four cell lines derived from N-methyl-N-nitrosourea-induced mouse glandular stomach carcinomas, Runx3 is silenced due to hypermethylation of CpG islands in the promoter region, as we also observed for human gastric cancer cells. Although two of the sites we tested in the promoter of the fourth line were not methylated, in all four cases the silencing of Runx3 could be reversed by treatment of the cells with 5-azacytidine and trichostatin A. Interestingly, the exogenous expression of RUNX3 in cell lines that do not express the endogenous gene caused an inhibition of growth in soft agar, suggesting that anchorage-independent growth could be used as an assay of RUNX3 activity in vitro. These observations suggest that the mouse system described here may be useful as a model for the study of human gastric carcinogenesis. |
Hypermethylation of the RUNX3 gene promoter in testicular yolk sac tumor of infants. | Testicular yolk sac tumor (YST) of infants is biologically distinct from its adult counterpart. Cytogenetically, YSTs in infants generally lack i(12p), which is highly characteristic of adult germ cell tumors (GCTs), whereas they frequently show a deletion of 1p36, indicating that the loss of a certain gene(s) in this region is an important event in the pathogenesis of infantile YSTs. In the present study, we examined 10 testicular YSTs from infants for promoter methylation status of the RUNX3 gene, localizing in 1p36.1, and loss of heterozygosity (LOH) in this region, on the presumption that RUNX3 acts as a tumor suppressor. Methylation of RUNX3 and LOH at 1p36.1 were detected in 8 of 10 (80%) and 6 of 8 (75%) infantile YSTs examined, respectively. All six cases harboring LOH showed RUNX3 methylation. In contrast, 0 of 12 adult GCTs showed RUNX3 methylation, and LOH at 1p36.1 was less frequent (1 of 6 cases: 16%) in adult GCTs. There is a significant difference in RUNX3 methylation between these 2 groups (P < 0.001). In normal testes of the young group, RUNX3 methylation was not detected. These results strongly suggest that RUNX3 is one of the tumor suppressors involved in the pathogenesis of testicular YSTs in infants. |
RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. | Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer. |
The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. | genes involved in the transforming growth factor beta (TGF-beta) signaling pathway are frequently altered in several types of cancers, and a gastric tumor suppressor RUNX3 appears to be an integral component of this pathway. We reported previously that apoptosis is notably reduced in Runx3-/- gastric epithelial cells. In the present study, we show that a proapoptotic gene Bim was transcriptionally activated by RUNX3 in the gastric cancer cell lines SNU16 and SNU719 treated with TGF-beta. The human Bim promoter contains RUNX sites, which are required for its activation. Furthermore, a dominant negative form of RUNX3 comprised of amino acids 1 to 187 increased tumorigenicity of SNU16 by inhibiting Bim expression. In Runx3-/- mouse gastric epithelium, Bim was down-regulated, and apoptosis was reduced to the same extent as that in Bim-/- gastric epithelium. We confirmed comparable expression of TGF-beta1 and TGF-beta receptors between wild-type and Runx3-/- gastric epithelia and reduction of Bim in TGF-beta1-/- stomach. These results demonstrate that RUNX3 is responsible for transcriptional up-regulation of Bim in TGF-beta-induced apoptosis. |
RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. | In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/TCF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling. |
Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. | RUNX3 is a tumor suppressor that is silenced in cancer following hypermethylation of its promoter. The effects of hypoxia in tumor suppressor gene (TSG) transcription are largely unknown. Here, we investigated hypoxia-induced silencing mechanisms of RUNX3. The expression of RUNX3 was downregulated in response to hypoxia in human gastric cancer cells at the transcriptional level. This downregulation was abolished following treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and cytosine methylation inhibitor 5-aza-2-deoxycytidine (5-Aza), suggesting that an epigenetic regulatory mechanism may be involved in RUNX3 silencing by hypoxia. DNA methylation PCR and bisulfite-sequencing data revealed that hypoxia did not affect the methylation of RUNX3 promoter. A chromatin immunoprecipitation (ChIP) assay revealed increased histone H3-lysine 9 dimethylation and decreased H3 acetylation in the RUNX3 promoter following hypoxia. Hypoxia resulted in the upregulation of G9a histone methyltransferase (HMT) and HDAC1; additionally, overexpression of G9a and HDAC1 attenuated RUNX3 expression. The overexpression of G9a and HDAC1, but not their mutants, inhibited the nuclear localization and expression of RUNX3. Diminished mRNA expression and nuclear localization of RUNX3 during hypoxia was abolished by siRNA-mediated knockdown of G9a and HDAC1. This study suggests that hypoxia silences RUNX3 by epigenetic histone regulation during the progression of gastric cancer. |
Inhibition of the growth and metastasis of human colon cancer by restoration of RUNX3 expression in cancer cells. | Recent studies demonstrated an epigenetic inactivation of the runt-related transcription factor 3 (RUNX3) gene in human colon cancer. However, it remains unclear whether RUNX3 is tumor suppressive in colon cancer and, if so, the underlying molecular mechanisms of this activity are still unknown. In the present study, we sought to determine the level of RUNX3 expression in human colon tumor specimens and used an animal model of colon cancer to determine the impact of RUNX3 expression on tumor growth and metastasis. First, we analyzed RUNX3 expression in 83 human colon tumor specimens using immunohistochemical, reverse transcriptase-polymerase chain reaction, and Western blot analysis. RUNX3 mRNA and protein expression levels were consistently lower in tumor tissue specimens than in matched normal colon tissue specimens. Also, restoration of RUNX3 expression in colon cancer cells using gene transfer inhibited colon tumor growth and metastasis in our animal model, which was consistent with inhibition of colon tumor growth in vitro. Collectively, our clinical and experimental data support the notion that RUNX3 is a tumor suppressor in human colon cancer. |
Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. | PURPOSE: RUNX3 is a known tumor suppressor gene in several carcinomas. Aberration in RUNX3 expression has not been described for cutaneous melanoma. Therefore, we assessed the expression of RUNX3 in cutaneous melanoma and its regulatory mechanisms relative to tumor progression. EXPERIMENTAL DESIGN: The expression of RUNX3 mRNA and miR-532-5p (microRNA) was assessed in melanoma lines and in primary and metastatic melanoma tumors. RESULTS: RUNX3 mRNA expression was down-regulated in 11 of 11 (100%) metastatic melanoma lines relative to normal melanocytes (P < 0.001). Among 123 primary and metastatic melanoma tumors and 12 normal skin samples, RUNX3 expression was significantly down-regulated in primary melanomas (n = 82; P = 0.02) and in melanoma metastasis (n = 41; P < 0.0001) versus normal skin (n = 12). This suggested that RUNX3 down-regulation may play a role in the development and progression of melanoma. RUNX3 promoter region hypermethylation was assessed as a possible regulator of RUNX3 expression using methylation-specific PCR. Assessment of RUNX3 promoter region methylation showed that only 5 of 17 (29%) melanoma lines, 2 of 52 (4%) primary melanomas, and 5 of 30 (17%) metastatic melanomas had hypermethylation of the promoter region. A microRNA (miR-532-5p) was identified as a target of RUNX3 mRNA sequences. miR-532-5p expression was shown to be significantly up-regulated in melanoma lines and metastatic melanoma tumors relative to normal melanocytes and primary melanomas, respectively. To investigate the relation between RUNX3 and miR-532-5p, anti-miR-532-5p was transfected into melanoma lines. Inhibition of miR-532-5p up-regulated both RUNX3 mRNA and protein expression. CONCLUSIONS: RUNX3 is down-regulated during melanoma progression and miR-532-5p is a regulatory factor of RUNX3 expression. |
Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. | BACKGROUND AND AIMS: AT motif binding factor 1 (ATBF1), a homeotic transcription factor, was identified as a tumor suppressor, and loss of heterozygosity at ATBF1 locus occurs frequently in gastric cancers. We previously showed that ATBF1 expression inversely correlated with the malignant character of gastric cancer and that ATBF1 enhanced the promoter activity of p21Waf1/Cip1. We also found that ATBF1 moves between cytoplasm and nucleus, but the precise mechanism of translocation is unknown. In this study, we investigated the mechanism of ATBF1 translocation to the nucleus with the runt domain transcription factor 3 (RUNX3) in cooperation with TGF-beta signal transduction. MATERIALS AND METHODS: To analyze the expression of ATBF1 and RUNX3 in gastric cancer cells, we performed immunohistochemistry on 98 resected gastric cancer tissue samples and scored the nuclear staining intensity as grade 0 to grade 5. Co-immunoprecipitation (co-IP) of ATBF1 and RUNX3 was performed. Dual luciferase assays were performed by transfecting ATBF1 and RUNX3 with a p21Waf1/Cip1 reporter vector. To investigate the nuclear translocation of endogenous ATBF1 and RUNX3 in response to TGF-beta signal, we examined the subcellular localization of ATBF1 and RUNX3 in gastric cancer cells treated with recombinant TGF-beta1 using confocal laser scanning microscopy. RESULTS: Strong immunohistochemical nuclear staining of ATBF1 was observed in 37 (37.8%) of the gastric cancer tissue samples, and RUNX3 nuclear staining was observed in 15 (15.3%). There was a statistically significant correlation between ATBF1 and RUNX3 nuclear localization (rs=0.433, p<0.001). Co-IP revealed a physical association between ATBF1 and RUNX3. ATBF1 and RUNX3 up-regulated p21Waf1/Cip1 promoter activity synergistically. In SNU16 gastric cancer cells, ATBF1 and RUNX3 were cytoplasmic before TGF-beta1 stimulation, but after 24h of TGF-beta1 stimulation, endogenous ATBF1 and RUNX3 translocated to the nucleus. CONCLUSION: ATBF1 associates with RUNX3 and translocates to the nucleus in response to TGF-beta signal transduction and might function in the nucleus as tumor suppressor and transcriptional regulator. |
Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. | Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for the development of gastric adenocarcinoma. The cagA gene product CagA is injected into gastric epithelial cells and disturbs cellular functions by physically interacting with and deregulating a variety of cellular signaling molecules. RUNX3 is a tumor suppressor in many tissues, and it is frequently inactivated in gastric cancer. In this study, we show that H. pylori infection inactivates the gastric tumor suppressor RUNX3 in a CagA-dependent manner. CagA directly associates with RUNX3 through a specific recognition of the PY motif of RUNX3 by a WW domain of CagA. Deletion of the WW domains of CagA or mutation of the PY motif in RUNX3 abolishes the ability of CagA to induce the ubiquitination and degradation of RUNX3, thereby extinguishing its ability to inhibit the transcriptional activation of RUNX3. Our studies identify RUNX3 as a novel cellular target of H. pylori CagA and also reveal a mechanism by which CagA functions as an oncoprotein by blocking the activity of gastric tumor suppressor RUNX3. |
Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction. | Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation. |
Restored expression of the tumor suppressor gene RUNX3 reduces cancer stem cells in hepatocellular carcinoma by suppressing Jagged1-Notch signaling. | Runt-related transcription factor 3 (RUNX3) is a candidate tumor suppressor gene that is downregulated in various cancers. In the present study, we analyzed the regulatory function of RUNX3 on Jagged-1 (JAG1) expression and cancer stem cell (CSC) signaling in hepatocellular carcinoma (HCC). Eleven HCC cell lines and 30 human HCC tissues were used. RUNX3 and JAG1 expression levels were analyzed by immunoblotting and immunohistochemistry. Ectopic RUNX3 expression was induced by introducing RUNX3 cDNA into the RUNX3-negative HCC cell line Hep3B and Huh7 cells. Furthermore endogenous RUNX3 expression was knocked down by RUNX3 siRNA in SK-Hep-1 cells. In order to analyze JAG1 transcriptional regulation, we conducted reporter assays, chromatin immunoprecipitation (ChIP) assays and electrophoretic mobility shift assays (EMSAs). Tumorigenicity was analyzed using a SCID mouse liver injection model. An inverse correlation was observed between RUNX3 expression and JAG1 expression in most HCC cell lines and tissues. Restoring RUNX3 expression decreased the expression of JAG1 in Hep3B and Huh7 cells, whereas JAG1 expression was upregulated in RUNX3 siRNA-treated SK-Hep-1 cells. Reporter assays, ChIP assays and EMSAs revealed that RUNX3 directly bound to the transcriptional regulatory region of JAG1 and suppressed JAG1 transcription. Moreover, RUNX3 restoration downregulated CSCs by suppressing JAG1-mediated Notch signaling. The tumorigenic capacity of RUNX3-expressing Hep3B cells was lower compared to that of control Hep3B cells. RUNX3 expression suppressed JAG1 expression and resulted in downregulation of tumorigenesis by suppression of JAG1-mediated CSCs. |
RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. | Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERalpha-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERalpha-dependent transactivation by reducing the stability of ERalpha. Consistent with its ability to regulate the levels of ERalpha, expression of RUNX3 inversely correlates with the expression of ERalpha in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERalpha, RUNX3 acts as a novel tumor suppressor in breast cancer. |