Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

8772

Name

FADD

Synonymous

GIG3|MORT1;Fas (TNFRSF6)-associated via death domain;FADD;Fas (TNFRSF6)-associated via death domain

Definition

FAS-associated death domain protein|Fas-associating death domain-containing protein|Fas-associating protein with death domain|growth-inhibiting gene 3 protein|mediator of receptor induced toxicity|mediator of receptor-induced toxicity

Position

11q13.3

Gene type

protein-coding

Title

Abstract

Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD.

Phosphorylation of the Fas-associated death domain (FADD) protein sensitizes cancer cells to various chemotherapeutics. However, the molecular mechanism underlying chemosensitization by phosphorylated FADD (P-FADD) is poorly understood. In this study, we describe the physical interactions and functional interplay between Polo-like kinase 1 (Plk1) and FADD. Plk1 phosphorylates FADD at Ser-194 in response to treatment with taxol. Overexpression of a phosphorylation-mimicking mutant, FADD S194D, caused degradation of Plk1 in an ubiquitin-independent manner, and delayed cytokinesis, consistent with the expected cellular phenotype of Plk1 deficiency. This demonstrates that Plk1 is regulated via a negative feedback loop by its substrate, FADD. Overexpression of FADD S194D sensitized HeLa cells to a low dose of taxol independently of caspase activation, whereas overexpression of FADD S194D resulted in caspase activation in response to a high dose of taxol. Therefore, we examined whether the death potential of P-FADD affected Plk1-mediated tumorigenesis. Transfection of FADD S194D inhibited colony formation by Plk1-overexpressing HeLa cells (HeLa-Plk1). Moreover, overexpression of FADD S194D suppressed tumorigenesis in nude mice xenografted with HeLa-Plk1. Therefore, this study reports the first in vivo validation of tumor-suppressing activity of P-FADD. Collectively, our data demonstrate that in response to taxol, Plk1 endows death-promoting and tumor-suppressor functions to its substrate, FADD.

')