Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

9521

Name

EEF1E1

Synonymous

AIMP3|P18;eukaryotic translation elongation factor 1 epsilon 1;EEF1E1;eukaryotic translation elongation factor 1 epsilon 1

Definition

ARS-interacting multifunctional protein 3|aminoacyl tRNA synthetase complex-interacting multifunctional protein 3|eukaryotic translation elongation factor 1 epsilon-1|multisynthase complex auxiliary component p18|p18 component of aminoacyl-tRNA synthetase

Position

6p24.3

Gene type

protein-coding

Title

Abstract

The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR.

p18 was first identified as a factor associated with a macromolecular tRNA synthetase complex. Here we describe the mouse p18 loss-of-function phenotype and a role for p18 in the DNA damage response. Inactivation of both p18 alleles caused embryonic lethality, while heterozygous mice showed high susceptibility to spontaneous tumors. p18 was induced and translocated to the nucleus in response to DNA damage. expression of p18 resulted in elevated p53 levels, while p18 depletion blocked p53 induction. p18 directly interacted with ATM/ATR in response to DNA damage. The activity of ATM was dependent on the level of p18, suggesting the requirement of p18 for the activation of ATM. Low p18 expression was frequently observed in different human cancer cell lines and tissues. These results suggest that p18 is a haploinsufficient tumor suppressor and a key factor for ATM/ATR-mediated p53 activation.

Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM.

Although AIMP3/p18 is normally associated with the multi-tRNA synthetase complex via its specific interaction with methionyl-tRNA synthetase, it also works as a tumor suppressor by interacting with ATM, the upstream kinase of p53. To understand the molecular interactions of AIMP3 and the mechanisms involved, we determined the crystal structure of AIMP3 at 2.0-angstroms resolution and identified its potential sites of interaction with ATM. AIMP3 contains two distinct domains linked by a 7-amino acid (Lys57-Ser63) peptide, which contains a 3(10) helix. The 56-amino acid N-terminal domain consists of two helices into which three antiparallel beta strands are inserted, and the 111-amino acid C-terminal domain contains a bundle of five helices (Thr64-Tyr152) followed by a coiled region (Pro153-Leu169). Structural analyses revealed homologous proteins such as yeast glutamyl-tRNA synthetase, Arc1p, EF1Bgamma, and glutathione S-transferase and suggested two potential molecular binding sites. Moreover, mutations at the C-terminal putative binding site abolished the interaction between AIMP3 and ATM and the ability of AIMP3 to activate p53. Thus, this work identified the two potential molecular interaction sites of AIMP3 and determined the residues critical for its tumor-suppressive activity through the interaction with ATM.

Absence of somatic mutation of a tumor suppressor gene eukaryotic translation elongation factor 1, epsilon-1 (EEF1E1), in common human cancers.

Promyelomonocytic leukemia (PML) is a prominent oncosuppressor whose inactivation is involved in the pathogenesis of hematological and epithelial cancers. Here, we report that PML aggregated in nuclear bodies in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. PML aggregation occurred after the fusion of nuclei (karyogamy) within syncytia but before the apoptotic program was activated. The aggregation of PML was detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Using a range of specific inhibitors of PML (the oncogenic PML/RARalpha fusion product or specific small interfering RNAs), we demonstrated that, in Env-elicited syncytia, PML was required for activating phosphorylation of ataxia telangiectasia mutated (ATM), which colocalized with PML in nuclear bodies, in a molecular complex that also involved topoisomerase IIbeta-binding protein 1. PML knockdown thus inhibited the ATM-dependent DNA damage response that culminates in the activation of p53, p53-dependent transcription of pro-apoptotic genes and cell death. Infection of CD4-expressing cells with HIV-1 also induced syncytial apoptosis, which could be suppressed by inhibiting PML. Altogether, these data indicate that PML activation is a critical early event that participates in the apoptotic demise of HIV-1-elicited syncytia.

Downregulation of lamin A by tumor suppressor AIMP3/p18 leads to a progeroid phenotype in mice.

Although AIMP3/p18 is normally associated with the macromolecular tRNA synthetase complex, recent reports have revealed a new role of AIMP3 in tumor suppression. In this study, we generated a transgenic mouse that overexpresses AIMP3 and characterized the associated phenotype in vivo and in vitro. Surprisingly, the AIMP3 transgenic mouse exhibited a progeroid phenotype, and the cells that overexpressed AIMP3 showed accelerated senescence and defects in nuclear morphology. We found that overexpression of AIMP3 resulted in proteasome-dependent degradation of mature lamin A, but not of lamin C, prelamin A, or progerin. The resulting imbalance in the protein levels of lamin A isoforms, namely altered stoichiometry of prelamin A and progerin to lamin A, appeared to be responsible for a phenotype that resembled progeria. An increase in the level of endogenous AIMP3 has been observed in aged human tissues and cells. The findings in this report suggest that AIMP3 is a specific regulator of mature lamin A and imply that enhanced expression of AIMP3 might be a factor driving cellular and/or organismal aging.

Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer.

Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) form a protein complex with aminoacyl-tRNA synthetases. In addition to protein translation, AIMPs play a role in diverse biological processes. Earlier studies suggested that AIMPs may act as tumor suppressors. However, the expression status of the AIMP proteins in human cancer tissues is largely unknown. In this study, we analyzed the expression of AIMP members (AIMP1, AIMP2 and AIMP3) in gastric cancer (GC) and colorectal cancer (CRC) tissues. We analyzed the expression of these proteins in 100 GC and 103 CRC tissues by immunohistochemistry using a tissue microarray method. Normal gastric and colon mucosa expressed AIMP1, AIMP2 and AIMP3 in nearly all of the cases (95-100%). However, the expression of AIMP1, AIMP2 and AIMP3 was significantly decreased in the GC samples (60%, 52% and 70% of the cases, respectively) and in the CRC samples (66%, 53% and 81% of the cases, respectively) ( P <0.01). expression of AIMP1, AIMP2 or AIMP3 was not associated with clinicopathological parameters including differentiation, depth of invasion and TNM stage. The decreased expression of AIMP1, AIMP2 and AIMP3 in the GC and CRC tissues compared to the corresponding normal tissues suggested that downregulation of these proteins may be related to inactivation of the tumor suppressor functions of AIMP proteins and might play a role in the development of GC and CRC.

Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3.

Mammalian methionyl-tRNA synthetase (MRS) plays an essential role in initiating translation by transferring Met to initiator tRNA (tRNA(i)(Met)). MRS also provides a cytosolic anchoring site for aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3)/p18, a potent tumor suppressor that is translocated to the nucleus for DNA repair upon DNA damage. However, the mechanism by which this enzyme mediates these two seemingly unrelated functions is unknown. Here we demonstrate that AIMP3 is released from MRS by UV irradiation-induced stress. Dissociation was induced by phosphorylation of MRS at Ser662 by general control nonrepressed-2 (GCN2) following UV irradiation. Substitution of Ser662 to Asp (S662D) induced a conformational change in MRS and significantly reduced its interaction with AIMP3. This mutant possessed significantly reduced MRS catalytic activity because of loss of tRNA(Met) binding, resulting in down-regulation of global translation. According to the Met incorporation assay using stable HeLa cells expressing MRS S662A or eukaryotic initiation factor-2 subunit-alpha (eIF2alpha) S51A, inactivation of GCN2-induced phosphorylation at eIF2alpha or MRS augmented the role of the other, suggesting a cross-talk between MRS and eIF2alpha for efficient translational inhibition. This work reveals a unique mode of regulation of global translation as mediated by aminoacyl-tRNA synthetase, specifically MRS, which we herein identified as a previously unidentified GCN2 substrate. In addition, our research suggests a dual role for MRS: (i) as a coregulator with eIF2alpha for GCN2-mediated translational inhibition; and (ii) as a coupler of translational inhibition and DNA repair following DNA damage by releasing bound tumor suppressor AIMP3 for its nuclear translocation.

')