Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

10181

Name

RBM5

Synonymous

G15|LUCA15|RMB5;RNA binding motif protein 5;RBM5;RNA binding motif protein 5

Definition

RNA-binding protein 5|putative tumor suppressor LUCA15|renal carcinoma antigen NY-REN-9

Position

3p21.3

Gene type

protein-coding

Source

Count: 3; Pubmed_search,TAG,Generif

Sentence

Abstract

"RBM5/H37 tumor suppressor, located at the lung cancer hot spot 3p21.3, alters expression of genes involved in metastasis."

The RBM5/H37 gene is located at the most 'sought-after' tumor suppressor locus in lung cancer, 3p21.3. This region of most frequent chromosomal deletion found at the earliest stage in lung cancer development houses 19 genes, many of which may act together as a 'tumor suppressor group', representing one of the most promising opportunities for development of new diagnostics/prognostics and therapeutics for lung cancer as well as for many other types of cancers. For the past decade, we have demonstrated tumor suppressor function of RBM5 in vitro and in vivo involving cell cycle arrest and apoptosis, as well as loss of RBM5 mRNA and protein expression in primary lung tumors. Here we report our latest data suggesting that RBM5 may regulate inhibition of metastasis in lung cancer. We performed cDNA microarray to identify global gene expression changes caused by RBM5 gene knockdown. In order to identify "consensus" pathways consistently deregulated by RBM5 loss irrespective of genetic background, the experiments were repeated in three different lung cancer cell lines of varying RBM5 expression levels, a normal lung epithelial cell line, and a normal breast epithelial cell line. Both Gene Set Enrichment Analysis (GSEA) and individual gene analysis identified consistent, statistically significant gene expression changes common to all five cell pairs examined. Genes involved in the functions of cell adhesion, migration and motility, known to be important in the metastatic process, were upregulated with RBM5-knockdown. These genes include Rac1, beta-catenin, collagen, laminin and the overall gene set of the gene ontology group "proteinaceous extracellular matrix". Among these, we have focused on Rac1 and beta-catenin which play essential roles in cell movement downstream of Wnt signaling. We have confirmed increased protein expression of beta-catenin and increased protein activation of Rac1 with RBM5-knockdown. In addition, we found that RBM5 protein expression loss in primary lung tumors is correlated with increased lymph node metastasis in a small number of lung cancer patients. These data are corroborated by an independent report showing RBM5 as part of a 17-gene signature of metastasis in primary solid tumors. Taken together, the accumulated evidence suggests that RBM5 expression loss may increase the metastatic potential of tumors. Further study is warranted to evaluate the potential clinical utility of RBM5 in lung cancer diagnostics, prognostics and therapeutics.CI - Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5.

RBM5 (RNA-binding motif protein 5) is a nuclear RNA binding protein containing 2 RNA recognition motifs. The RBM5 gene is located at the tumor suppressor locus 3p21.3. Deletion of this locus is the most frequent genetic alteration in lung cancer, but is also found in other human cancers. RBM5 is known to induce apoptosis and cell cycle arrest but the molecular mechanisms of RBM5 function are poorly understood. Here, we show that RBM5 is important for the activity of the tumor suppressor protein p53. Overexpression of RBM5 enhanced p53-mediated inhibition of cell growth and colony formation. expression of RBM5 augmented p53 transcriptional activity in reporter gene assays and resulted in increased mRNA and protein levels for endogenous p53 target genes. In contrast, shRNA-mediated knockdown of endogenous RBM5 led to decreased p53 transcriptional activity and reduced levels of mRNA and protein for endogenous p53 target genes. RBM5 affected protein, but not mRNA, levels of endogenous p53 after DNA damage suggest that RBM5 contributes to p53 activity through post-transcriptional mechanisms. Our results show that RBM5 contributes to p53 transcriptional activity after DNA damage and that growth suppression and apoptosis mediated by RBM5 are linked to activity of the tumor suppressor protein p53.CI - Copyright (c) 2010 UICC.

Death by splicing: tumor suppressor RBM5 freezes splice-site pairing.

In a recent issue of Molecular Cell, Bonnal et al. (2008) demonstrate that the tumor suppressor gene RBM5 regulates alternative splicing of Fas pre-mRNA by interfering with splice-site pairing.

"Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5."

Similar to many genes involved in programmed cell death (PCD), the caspase 2 (casp-2) gene generates both proapoptotic and antiapoptotic isoforms by alternative splicing. Using a yeast RNA-protein interaction assay, we identified RBM5 (also known as LUCA-15) as a protein that binds to casp-2 pre-mRNA. In both transfected cells and in vitro splicing assay, RBM5 enhances the formation of proapoptotic Casp-2L. RBM5 binds to a U/C-rich sequence immediately upstream of the previously identified In100 splicing repressor element. Our mutagenesis experiments demonstrate that RBM5 binding to this intronic sequence regulates the ratio of proapoptotic/antiapoptotic casp-2 splicing isoforms, suggesting that casp-2 splicing regulation by RBM5 may contribute to its tumor suppressor activity. Our work has uncovered a player in casp-2 alternative splicing regulation and revealed a link between the alternative splicing regulator and the candidate tumor suppressor gene. Together with previous studies, our work suggests that splicing control of cell death genes may be an important aspect in tumorigenesis. Enhancing the expression or activities of splicing regulators that promote the production of proapoptotic splicing isoforms might provide a therapeutic approach to cancer.

Promoter methylation study of the H37/RBM5 tumor suppressor gene from the 3p21.3 human lung cancer tumor suppressor locus.

Loss of heterozygosity (LOH) at chromosome 3p21.3 is one of the most prevalent genetic disturbances occurring at the earliest stage of tumor development for a wide variety of human cancers, culminated in lung cancer. The 19 genes residing at 3p21.3 have been vigorously characterized for tumor suppressor activity and gene inactivation mechanism because of their potentially significant merits of clinical applications. Many of these 19 genes have been shown to manifest various growth inhibitory properties, however none of them are inactivated by coding mutations in their remaining allele as in the Knudson's two- hits hypothesis. Thus far the most prevailing, alternative gene inactivation mechanism known for the 3p21.3 TSGs is epigenetic silencing by promoter hypermethylation. Previously, we have focused our investigation on one of the 19 genes at 3p21.3, H37/RBM5, and demonstrated its tumor suppressor activity both in vitro and in vivo as well as its mRNA/protein expression loss from the remaining allele in a majority of the primary lung tumors examined. The current study tested our hypothesis that the H37 inactivation in primary lung tumors may, as seen in most of the other 3p21.3 TSGs, be due to hypermethylation in its promoter CpG islands. Contrary to this most plausible postulation, however, we found no evidence of epigenetic gene silencing for the H37 TSG. Here we suggest some of the possible, further- alternative means of the H37 gene expression loss in tumor, including defects in transcription and post-transcriptional/translational modifications as well as mechanisms related to haploinsufficiency.

3p21.3 tumor suppressor gene H37/Luca15/RBM5 inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis.

Deletion at chromosome 3p21.3 is the earliest and the most frequently observed genetic alteration in lung cancer, suggesting that the region contains tumor suppressor gene(s) (TSG). Identification of those genes may lead to the development both of biomarkers to identify high-risk individuals and novel therapeutics. Previously, we cloned the H37/Luca15/RBM5 gene from 3p21.3 and showed its TSG characteristics. To investigate the physiologic function of H37 in the lung and its mechanism of tumor suppression, we have stably transfected H37 into A549 non-small cell lung cancer cells. A549/H37 cells show significant growth inhibition compared with the vector controls by in vitro and in vivo cell proliferation assays. Using this lung cancer cell model, we have found that the molecular mechanism of H37 tumor suppression involves both cell cycle (G(1)) arrest and apoptosis. To further define H37's function in cell cycle/apoptotic pathways, we investigated differential expression profiles of various cell cycle and apoptosis regulatory proteins using Western blot analysis. Both cyclin A and phophorylated RB levels were decreased in H37-transfected cells, whereas expression of Bax protein was increased. Mitochondrial regulation of apoptosis further downstream of Bax was investigated, showing change in the mitochondrial membrane potential, cytochrome c release into the cytosol, and enhanced caspase-9 and caspase-3 activities. We also report that H37 may mediate apoptosis in a p53-independent manner, and Bax knockdown by small interfering RNA suggests Bax plays a functional role downstream of H37. Lastly, we proposed a tumor suppression model of H37 as a post-transcriptional regulator for cell cycle/apoptotic-related proteins.

Results suggest that LUCA-15 plays a central role in regulating cell fate consistent with its tumor suppressor activity.

RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas