|
||
|
||
General information | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 10217 |
Name | CTDSPL |
Synonymous | C3orf8|HYA22|PSR1|RBSP3|SCP3;CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like;CTDSPL;CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like |
Definition | CTD small phosphatase-like protein|CTDSP-like|NIF-like protein|NLI-interacting factor 1|RB protein serine phosphatase from chromosome 3|carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 3|nuclear LIM interactor-interacting factor 1 |
Position | 3p21.3 |
Gene type | protein-coding |
Source | Count: 2; Pubmed_search,Generif |
Sentence |
Abstract |
"MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia." | Acute myeloblastic leukemia (AML) is characterized by the accumulation of abnormal myeloblasts (mainly granulocyte or monocyte precursors) in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, only minority with AML achieve long-term survival. Therefore, further understanding mechanisms of leukemogenesis and exploring novel therapeutic strategies are still crucial for improving disease outcome. microRNA-100 (miR-100), a small non-coding RNA molecule, has been reported as a frequent event aberrantly expressed in patients with AML; however, the molecular basis for this phenotype and the statuses of its downstream targets have not yet been elucidated. In the present study, we found that the expression level of miR-100 in vivo was related to the stage of the maturation block underlying the subtypes of myeloid leukemia. In vitro experiments further demonstrated that miR-100 was required to promote the cell proliferation of promyelocytic blasts and arrest them differentiated to granulocyte/monocyte lineages. Significantly, we identified RBSP3, a phosphatase-like tumor suppressor, as a bona fide target of miR-100 and validated that RBSP3 was involved in cell differentiation and survival in AML. Moreover, we revealed a new pathway that miR-100 regulates G1/S transition and S-phase entry and blocks the terminal differentiation by targeting RBSP3, which partly in turn modulates the cell cycle effectors pRB/E2F1 in AML. These events promoted cell proliferation and blocked granulocyte/monocyte differentiation. Our data highlight an important role of miR-100 in the molecular etiology of AML, and implicate the potential application of miR-100 in cancer therapy. |
"tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A are downregulated in primary non-small cell lung cancer" | BACKGROUND: The short arm of human chromosome 3 is involved in the development of many cancers including lung cancer. Three bona fide lung cancer tumor suppressor genes namely RBSP3 (AP20 region),NPRL2 and RASSF1A (LUCA region) were identified in the 3p21.3 region. We have shown previously that homozygous deletions in AP20 and LUCA sub-regions often occurred in the same tumor (P < 10-6). METHODS: We estimated the quantity of RBSP3, NPRL2, RASSF1A, GAPDH, RPN1 mRNA and RBSP3 DNA copy number in 59 primary non-small cell lung cancers, including 41 squamous cell and 18 adenocarcinomas by real-time reverse transcription-polymerase chain reaction based on TaqMan technology and relative quantification. RESULTS: We evaluated the relationship between mRNA level and clinicopathologic characteristics in non-small cell lung cancer. A significant expression decrease (> or =2) was found for all three genes early in tumor development: in 85% of cases for RBSP3; 73% for NPRL2 and 67% for RASSF1A (P < 0.001), more strongly pronounced in squamous cell than in adenocarcinomas. Strong suppression of both, NPRL2 and RBSP3 was seen in 100% of cases already at Stage I of squamous cell carcinomas. Deregulation of RASSF1A correlated with tumor progression of squamous cell (P = 0.196) and adenocarcinomas (P < 0.05). Most likely, genetic and epigenetic mechanisms might be responsible for transcriptional inactivation of RBSP3 in non-small cell lung cancers as promoter methylation of RBSP3 according to NotI microarrays data was detected in 80% of squamous cell and in 38% of adenocarcinomas. With NotI microarrays we tested how often LUCA (NPRL2, RASSF1A) and AP20 (RBSP3) regions were deleted or methylated in the same tumor sample and found that this occured in 39% of all studied samples (P < 0.05). CONCLUSION: Our data support the hypothesis that these TSG are involved in tumorigenesis of NSCLC. Both genetic and epigenetic mechanisms contribute to down-regulation of these three genes representing two tumor suppressor clusters in 3p21.3. Most importantly expression of RBSP3, NPRL2 and RASSF1A was simultaneously decreased in the same sample of primary NSCLC: in 39% of cases all these three genes showed reduced expression (P < 0.05). |
High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. | BACKGROUND: Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. METHODOLOGY/PRINCIPAL FINDINGS: We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1-2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3-5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. CONCLUSIONS/SIGNIFICANCE: This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread. |
"analysis of RBSP3/HYA22located in the AP20 region, and evidence for tumor suppressor function" | Chromosome 3p21.3 region is frequently (>90%) deleted in lung and other major human carcinomas. We subdivided 3p21.3 into LUCA and AP20 subregions and discovered frequent homozygous deletions (10-18%) in both subregions. This finding strongly implies that they harbor multiple tumor suppressor genes involved in the origin and/or development of major epithelial cancers. In this study, we performed an initial analysis of RBSP3/HYA22, a candidate tumor suppressor genes located in the AP20 region. Two sequence splice variants of RBSP3/HYA22 (A and B) were identified, and we provide evidence for their tumor suppressor function. By sequence analysis RBSP3/HYA22 belongs to a gene family of small C-terminal domain phosphatases that may control the RNA polymerase II transcription machinery. expression of the gene was drastically (>20-fold) decreased in 11 of 12 analyzed carcinoma cell lines and in three of eight tumor biopsies. We report missense and nonsense mutations in tumors where RBSP3/HYA22 was expressed, growth suppression with regulated transgenes in culture, suppression of tumor formation in severe combined immunodeficient mice, and dephosphorylation of ppRB by RBSP3/HYA22, presumably leading to a block of the cell cycle at the G1/S boundary. |
Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved |