|
||
|
||
General information | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 1029 |
Name | CDKN2A |
Synonymous | ARF|CDK4I|CDKN2|CMM2|INK4|INK4A|MLM|MTS-1|MTS1|P14|P14ARF|P16|P16-INK4A|P16INK4|P16INK4A|P19|P19ARF|TP16;cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4);CDKN2A;cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) |
Definition | CDK4 inhibitor p16-INK4|cell cycle negative regulator beta|cyclin-dependent kinase 4 inhibitor A|cyclin-dependent kinase inhibitor 2A|multiple tumor suppressor 1 |
Position | 9p21 |
Gene type | protein-coding |
Source | Count: 4; Pubmed_search,TAG,Generif,UniProt |
Sentence |
Abstract |
Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. | The tumor suppressor p16INK4A with eight N-terminal amino acids deleted (p16/delta 1-8) was expressed in Escherichia coli without any fusion artifacts and purified. The integrity of p16/delta 1-8 was confirmed by mass spectrometry, and its activity was demonstrated by in vitro cdk4 inhibition assay. Various physical methods were used to characterize the molecular and structural properties of p16/delta 1-8. The protein was found to oligomerize in vitro, as demonstrated by gel electrophoresis, mass spectrometry, and NMR. Various approaches, including changes of concentration and pH, additions of salts, detergents, and various organic solvents, and construction of a C-terminal deletion mutant and a cysteine mutant were used to try to reduce the extent of oligomerization. Only decreasing the protein concentration was found to reduce oligomerization. The affinity between p16 molecules in vivo was demonstrated by the yeast two-hybrid system. The protein was found to be very unstable on the basis of urea- and guanidinium chloride-induced denaturation studies monitored by NMR and CD, respectively. Despite these unfavorable properties, total NMR assignments were accomplished with uniform 13C and 15N isotope labeling. All multidimensional NMR experiments were performed at a very low concentration of 0.2 mM. The secondary structure was then determined from the NMR data. The results of NMR and CD studies indicate that the protein is highly alpha-helical, and the ankyrin repeat sequences show helix-turn-helix structures. This is the first structural information obtained for the important motif of ankyrin repeats. Overall, p16/delta 1-8 appears to be conformationally flexible. In order to understand the structural basis of the functional changes for some mutants existing in tumor cells, several missense mutants of p16/delta 1-8 were constructed. Four of them were expressed at high levels and purified. The molecular and structural properties of these mutants were analyzed by CD and NMR and compared with the corresponding properties of wild-type p16/delta 1-8. The results suggest that the functional changes in P114L and G101W are likely to be related to global conformational changes. In addition, we have demonstrated that the tendency of aggregation increases significantly by a single D84H mutation. |
Somatic mutations of the MTS (multiple tumor suppressor) 1/CDK4l (cyclin-dependent kinase-4 inhibitor) gene in human primary non-small cell lung carcinomas. | Cytogenetic abnormalities of chromosome 9p21-22 have been documented in human non-small cell lung carcinomas (NSCLC). Recently, a candidate tumor suppressor gene, MTS1/CDK4l, was identified in this chromosomal region and frequent homozygous deletions of this gene were found in cancer cell lines derived from various types of tissues. We screened 64 primary NSCLCs, including 31 adenocarcinomas and 33 squamous cell carcinomas, for mutations in MTS1/CDK4l, and detected somatic mutations in 19 of the 64 tumors examined. Five were deletions and 14 were missense mutations. These results suggest that inactivation of MTS1/CDK4l plays an important role during carcinogenesis of NSCLC. |
Tumor suppressor p16INK4a controls oncogenic K-Ras function in human pancreatic cancer cells. | Pancreatic cancer is characterized by oncogenic activation of K-Ras and inactivation of the cell cycle inhibitor p16(INK4a) . We previously demonstrated that reintroduction of p16(INK4a) reversed anoikis resistance and clonogenicity of human pancreatic cancer cells, properties commonly attributed to the transforming potential of oncogenic K-Ras. Therefore, we aimed to determine the role of Ras after p16(INK4a) re-expression. Here, we show that restitution of p16(INK4a) in pancreatic cancer cell lines elicits a profound suppression of K-Ras activity. A more detailed analysis in p16(INK4a) reconstituted Capan-1 cells indicated selective reduction of both K-Ras activity and protein stability. Re-expression of K-Ras in p16(INK4a) restituted Capan-1 cells reversed the anoikis-sensitive phenotype and increased colony formation, indicating that K-Ras suppression was required for p16(INK4a) -mediated reversion of the transformed phenotype. Inducible expression of p16(INK4a) in DanG cells confirmed inhibition of K-Ras activity as well as an increase in anoikis susceptibility. Thus, our results delineate a novel functional interaction with defined biological consequences for the two most frequent alterations observed in pancreatic cancer.CI - (c) 2011 Japanese cancer Association. |
The tumor suppressor p33ING1b upregulates p16INK4a expression and induces cellular senescence. | ING1 protein is a tumor suppressor which plays significant roles in multiple cellular activities. p47(ING1a) and p33(ING1b) are major splice isoforms of ING1 and their roles in senescence need further investigations. Here we studied the functions of ING1 isoforms in cellular senescence and gene regulation, with focus on p16(INK4a). We observe that p33(ING1b) protein is the major ING1 isoform expressed in 2BS human diploid fibroblasts. Overexpression of p33(ING1b) induces cellular senescence and upregulates p16(INK4a) expression in 2BS fibroblasts. p33(ING1b) upregulates p16(INK4a) transcription. p33(ING1b) and p300 bind to the p16(INK4a) promoter. p300/CBP-specific inhibitor curcumin can reverse the induction of p16(INK4a) by p33(ING1b). These results help to better understand the function of ING1.CI - Copyright (c) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. |
Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. | Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16(INK4a), a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16(INK4a) and another cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16(INK4a). Cells induced to senesce by ectopic p16(INK4a) expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16(INK4a) by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16(INK4a) in suppressing the SASP. These findings suggest that p16(INK4a)-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16(INK4a) activation or senescence per se, but rather is a damage response that is separable from the growth arrest. |
Interaction of the ARF tumor suppressor with cytosolic HSP70 contributes to its autophagy function. | The p14/p19 (ARF) (ARF) tumor suppressor gene is frequently mutated in human cancer. Recently ARF has been shown to localize to mitochondria and to induce autophagy. However the controls that regulate the trafficking of ARF to mitochondria remain unknown. We recently reported that 2-phenylethynesulfonamide (PES) selectively interacts with cytosolic heat shock protein 70 (HSP70) and inhibits its function; we further showed that PES promotes the death of tumor cells, and that this is associated with an impairment of lysosome function and an inhibition of autophagy. In the present work we used a mass spectrometry-based approach to identify mitochondrial ARF-binding proteins. We report that mitochondrial ARF interacts with HSP70. We show that treatment of cells with PES blocks the trafficking of ARF to mitochondria, indicating that interaction with HSP70 mediates the mitochondrial localization of ARF. We also show that PES inhibits the ability of ARF to induce autophagy, supporting the premise that localization to this organelle is critical for ARF-induced autophagy. Finally, we report that cells expressing high levels of ARF are more sensitive to PES than counterparts with ARF silenced. High levels of ARF are characteristic of tumor cells with enhanced MAPK signaling and advanced stage; therefore, these data support the premise that PES may show preferential cytotoxicity to advanced stage cancers. |
Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. | P16(INK4A) (also known as P16 and MTS1), a protein consisting exclusively of four ankyrin repeats, is recognized as a tumor suppressor mainly because of the prevalence of genetic inactivation of the p16(INK4A) (or CDKN2A) gene in virtually all types of human cancers. However, it has also been shown that an elevated level of expression (upregulation) of P16 is involved in cellular senescence, aging, and cancer progression, indicating that the regulation of P16 is critical for its function. Here, we discuss the regulatory mechanisms of P16 function at the DNA level, the transcription level, and the posttranscriptional level, as well as their implications for the structure-function relationship of P16 and for human cancers. |
"Cancerous tissues from 30 patients with HPSCC were examined for LOH in 4 tumor suppressor genes (TSGs) (p16, Rb, E-cadherin, and p53) at loci 9p21, 13q21, 6q22, and 17p13, respectively, using microsatellite markers amplified by polymerase chain reaction." | OBJECTIVE: Microsatellite alterations, especially those that cause loss of heterozygosity (LOH), have recently been postulated as a novel mechanism of carcinogenesis and a useful prognostic factor in many kinds of malignant tumors. However, few studies have focused on a specific site, hypopharynx. The aim of this study was to evaluate the relationship between LOH and hypopharyngeal squamous cell carcinoma (HPSCC). STUDY DESIGN: Laboratory-based study. SETTING: Integrated health care system. SUBJECTS AND METHODS: Matched normal and cancerous tissues from 30 patients with HPSCC were examined for LOH in 4 tumor suppressor genes (TSGs) (p16, Rb, E-cadherin, and p53) at loci 9p21, 13q21, 6q22, and 17p13, respectively, using microsatellite markers amplified by polymerase chain reaction. The results for each loci were compared with clinicopathological features. RESULTS: Among the 30 cases, 26 (86.7%) exhibited LOH, with the most common alteration being LOH at p53 (52.6%). Significantly higher rates of LOH detection were seen in Rb, p53, and the LOH-high group (cases where 2 or more loci with LOH were found) in cases of lymph node metastasis. Compared with stage I and II carcinoma, tumors of stages III and IV had significantly higher frequencies of LOH in Rb, p53, and the LOH-high group. However, the presence of LOH was not significantly correlated with survival. CONCLUSION: These results suggest that LOH in TSGs such as Rb and p53 may contribute to the development and progression of HPSCC. The presence of LOH in the primary tumor may also be predictive of lymph node metastasis. |
p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. | p16(Ink4a) is a protein involved in regulation of the cell cycle. Currently, p16(Ink4a) is considered a tumor suppressor protein because of its physiological role and downregulated expression in a large number of tumors. Intriguingly, overexpression of p16(Ink4a) has also been described in several tumors. This review attempts to elucidate when and why p16(Ink4a) overexpression occurs, and to suggest possible implications of p16(Ink4a) in the diagnosis, prognosis and treatment of cancer. |
[Expression of ubiquitin associated protein 1 gene and tumor-suppressor gene p16 in acute leukemia]. | In order to investigate the expression and the relationship of ubiquitin associated protein 1 (ubap1) gene and tumor-suppressor gene p16 in acute leukemia, 68 cases of acute leukemia and 22 control cases were selected in this experiment, FQ-PCR technique was used to detect the mRNA expression level of ubap1 gene and p16 gene in their bone marrow cells. The results showed that as compared with the control group, the ubap1 gene in acute leukemia group highly expressed (p<0.01), while the p16 gene lowly expressed (p<0.01). But grouping of patients according to FAB revealed that as compared with the control group, the ubap1 gene expression displayed statistical difference only in M4 and M5 of adult AML (p<0.05), while the p16 gene expression in all groups of adult AML showed significant difference (p<0.05) except M1 and M2. In addition to this, the ubap1 gene and p16 gene mRNA expression in AL was not relate with chromosome abnormality (p>0.05). A negative correlation (r=-0.827, p<0.01) was found between the ubap1 gene and p16 gene mRNA expressions in the control group. It is concluded that the upregulation of ubap1 gene expression mainly and the downregulation of p16 gene expression mainly may simultaneously participate in the pathogenesis of acute leukemia. High expression of ubap1 gene influences the M4 and M5 subtypes in AML. This discovery provides important theoretical basis for the further investigation of pathogenesis and targeting therapy of AL. |
Alterations in the tumor suppressor gene p16(INK4A) are associated with aggressive behavior of penile carcinomas. | Alterations in the p16/cyclinD1/Rb and ARF/Mdm2/p53 pathways are frequent events in the pathogenesis of squamous cell carcinomas. Different mechanisms of p16 regulation have been described for penile carcinomas so far. Therefore, expression of p16 and p53 was immunohistochemically detected with monoclonal antibodies in 52 primary invasive penile squamous cell carcinomas. The carcinomas were analyzed for allelic loss (LOH) in p16(INK4A) and p53, as well as for mutations in the p16(INK4A) and the p53 gene. In addition, we examined the promoter status of p16(INK4A) by methylation-specific PCR. The presence of human papilloma virus (HPV) 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Data were compared to clinical data. Concerning p16, 26 (50%) tumors showed positive immunohistochemistry, 32 (62%) tumors showed allelic loss and 22 tumors (42%) showed promoter hypermethylation. All tumors with negative p16 immunohistochemistry showed LOH near the p16(INK4A) locus and/or hypermethylation of the p16(INK4A) promoter. HPV 16 DNA was detected in 17 tumors, ten of them with positive p16 immunostaining. The remaining seven tumors with negative p16 staining showed allelic loss and/or promoter hypermethylation. Evidence of lymph node metastasis was significantly associated with negative p16 immunohistochemistry as well as with combined LOH and promoter hypermethylation (p = 0.003 and p = 0.018, respectively). Allelic loss around p53 was found in 22 tumors (42%), and seven mutations of the p53 gene could be demonstrated in our tumors. No correlations could be found between any p53 alteration and clinical parameters. |
p16 controls the cell cycle as tumor suppressor | INTRODUCTION: The regulation proteins retinoblastoma protein (pRb) and p16 play an important role in the cell cycle as tumor suppressors. pRb is the main substrate for the function of cyclin-dependent kinases during the cell cycle in the transition from G(1) to S phase. In this study, the immunohistochemical expression of pRb and p16 in renal cell carcinoma (RCC) were examined. METHODS: Paraffin-embedded specimens from 94 patients with RCC were examined immunohistologically, using primary antibodies for p16 and pRb (Novocastra) and a biotin-conjugated anti-mouse IgG secondary antibody. Microscopically, the expression of p16 and pRb was evaluated by examination of the staining intensity of 100 cells of each specimen, and compared with epidemiological parameters (tumor size, TNM, nuclear grade and follow-up). Statistical analyses were conducted by SPSS, version 15.0 (SPSS(R) Inc., Chicago, Ill., USA), the chi(2) test (Fisher's exact test), the Kaplan-Meier method and Mantel's log rank test. RESULTS: All 94 tumors showed a positive reaction for pRb (weakly positive in 67.0%; strongly positive in 33.0%). p16 was expressed in only 52.1% (weakly positive in 48.9%; intermediately positive in 3.2%; no strongly positive expression). The expression of p16-positive tumors was significantly associated with the expression of pRb (p = 0.040). Tumor size, grading, lymph node and distant metastases did not correlate with p16/pRb expression. CONCLUSION: pRb and p16 control the cell cycle as tumor suppressors. Therefore, in many tumors they are dysregulated. There are distinct differences in expression in various individual RCC. However, in a limited number of cases there was no significant correlation with clinical parameters.CI - Copyright (c) 2010 S. Karger AG, Basel. |
The p16(INK4A) tumor suppressor regulates cellular oxidative stress. | mutations or deletions in the cyclin-dependent kinase inhibitor p16(INK4A) are associated with multiple cancer types, but are more commonly found in melanoma tumors and associated with familial melanoma predisposition. Although p16 is thought to function as a tumor suppressor by negatively regulating the cell cycle, it remains unclear why the genetic compromise of p16 predisposes to melanoma over other cancers. Here we describe a novel role for p16 in regulating oxidative stress in several cell types, including melanocytes. expression of p16 was rapidly upregulated following ultraviolet-irradiation and in response to H(2)O(2)-induced oxidative stress in a p38 stress-activated protein kinase-dependent manner. Knockdown of p16 using small interfering RNA increased intracellular reactive oxygen species (ROS) and oxidative (8-oxoguanine) DNA damage, which was further enhanced by H(2)O(2) treatment. Elevated ROS levels were also observed in p16-depleted human keratinocytes and in whole skin and dermal fibroblasts from Cdkn2a-deficient mice. Aberrant ROS and p38 signaling in Cdkn2a-deficient fibroblasts was normalized by expression of exogenous p16. The effect of p16 depletion on ROS was not recapitulated by the knockdown of retinoblastoma protein (Rb) and did not require Rb. Finally, p16-mediated suppression of ROS could not be attributed to the potential effects of p16 on cell cycle phase. These findings suggest a potential alternate Rb-independent tumor-suppressor function of p16 as an endogenous regulator of carcinogenic intracellular oxidative stress. Compared with keratinocytes and fibroblasts, we also found increased susceptibility of melanocytes to oxidative stress in the context of p16 depletion, which may explain why the compromise of p16 predisposes to melanoma over other cancers. |
"Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China." | BACKGROUND: Cigarette smoking is the most established risk factor, and genetic variants and/or gene promoter methylations are also considered to play an essential role in development of lung cancer, but the pathogenesis of lung cancer is still unclear. METHODS: We collected the data of 150 cases and 150 age-matched and sex-matched controls on a Hospital-Based Case-Control Study in China. Face to face interviews were conducted using a standardized questionnaire. Gene polymorphism and methylation status were measured by RFLP-PCR and MSP, respectively. Logistic regressive model was used to estimate the odds ratios (OR) for different levels of exposure. RESULTS: After adjusted age and other potential confounding factors, smoking was still main risk factor and significantly increased 3.70-fold greater risk of NSCLC as compared with nonsmokers, and the ORs across increasing levels of pack years were 1, 3.54, 3.65 and 7.76, which the general dose-response trend was confirmed. Our striking findings were that the risk increased 5.16, 8.28 and 4.10-fold, respectively, for NSCLC with promoter hypermethylation of the p16, DAPK or RAR beta gene in smokers with CYP1A1 variants, and the higher risk significantly increased in smokers with null GSTM1 and the OR was 17.84 for NSCLC with p16 promoter hypermethylation, 17.41 for DAPK, and 8.18 for RAR beta in smokers with null GSTM1 compared with controls (all p < 0.01). CONCLUSION: Our study suggests the strong combined effects of cigarette smoke, CYP1A1 and GSTM1 Polymorphisms, hypermethylations of p16, DAPK and RAR beta promoters in NSCLC, implying complex pathogenesis of NSCLC should be given top priority in future research. |
"Tumor suppressor p16 INK4a: Downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model." | The tumor suppressor p16(INK4a) has functions beyond cell-cycle control via cyclin-dependent kinases. A coordinated remodeling of N- and O-glycosylation, and an increase in the presentation of the endogenous lectin galectin-1 sensing these changes on the surface of p16(INK4a)-expressing pancreatic carcinoma cells (Capan-1), lead to potent pro-anoikis signals. We show that the p16(INK4a)-dependent impact on growth-regulatory lectins is not limited to galectin-1, but also concerns galectin-3. By monitoring its expression in relation to p16(INK4a) status, as well as running anoikis assays with galectin-3 and cell transfectants with up- or downregulated lectin expression, a negative correlation between anoikis and the presence of this lectin was established. Nuclear run-off and northern blotting experiments revealed an effect of the presence of p16(INK4a) on steady-state levels of galectin-3-specific mRNA that differed from decreasing the transcriptional rate. On the cell surface, galectin-3 interferes with galectin-1, which initiates signaling toward its pro-anoikis activity via caspase-8 activation. The detected opposite effects of p16(INK4a) at the levels of growth-regulatory galectins-1 and -3 shift the status markedly towards the galectin-1-dependent pro-anoikis activity. A previously undescribed orchestrated fine-tuning of this effector system by a tumor suppressor is discovered. |
p16 might act as a tumor suppressor in gastric carcinomas and appears to be more frequently methylated in lymphatic-invasive gastric carcinomas. | BACKGROUND: A tumor suppressor gene, p16, was found to harbor promoter methylation associated with the loss of protein expression in cancer cells, suggesting that p16 inactivation due to promoter methylation may be important for gastric tumorigenesis. PATIENTS AND METHODS: The methylation status of the p16 gene was examined in primary carcinomas and the corresponding normal tissues derived from 49 patients with gastric cancer using quantitative methylation-specific PCR (qMSP) and the correlation between the methylation status and the clinicopathological findings was evaluated. RESULTS: Aberrant methylation of the p16 gene was detected in 17 out of the 49 (34%) primary gastric carcinomas, suggesting that the aberrant methylation of p16 is frequently observed in gastric carcinomas. The clinicopathological data were then correlated with these results. Significant differences were observed with lymphatic invasion (p=0.046) and tumor site (p=0.010). CONCLUSION: p16 might act as a tumor suppressor in gastric carcinomas and appears to be more frequently methylated in lymphatic-invasive gastric carcinomas. |
Aberrant epigenetic silencing of tumor suppressor genes is reversed by direct reprogramming. | Direct reprogramming procedures reset the epigenetic memory of cells and convert differentiated somatic cells into pluripotent stem cells. In addition to epigenetic memory of cell identity, which is established during development, somatic cells can accumulate abnormal epigenetic changes that can contribute to pathological conditions. Aberrant promoter hypermethylation and epigenetic silencing of tumor suppressor genes (TSGs) are now recognized as an important mechanism in tumor initiation and progression. Here, we have studied the fate of the silenced TSGs p16(CDKN2A) during direct reprogramming. We find that following reprogramming, p16 expression is restored and is stably maintained even when cells are induced to differentiate. Large-scale methylation profiling of donor cells identified aberrant methylation at hundreds of additional sites. Methylation at many, but not all these sites was reversed following reprogramming. Our results suggest that reprogramming approaches may be applied to repair the epigenetic lesions associated with cancer. |
Role for the MOV10 RNA helicase in polycomb-mediated repression of the INK4a tumor suppressor. | Several lines of evidence point to a role for noncoding RNA in transcriptional repression by Polycomb group (PcG) proteins, but the precise mechanism remains unclear. Here we show that human MOV10, a putative RNA helicase previously implicated in post-transcriptional gene silencing, co-purifies and interacts with components of Polycomb-repressive complex 1 (PRC1) from human cells. Endogenous human MOV10 is mostly nuclear, and a proportion associates with chromatin in an RNA-dependent manner. Small hairpin RNA (shRNA)-mediated knockdown of MOV10 in human fibroblasts leads to the upregulation of the INK4a tumor suppressor, a known target of PcG-mediated repression, accompanied by the dissociation of PRC1 proteins from the locus and a reduction in trimethylation of histone H3 on Lys27 (H3K27me3). As well as prompting reassessment of MOV10's role in other settings, our findings suggest that it is directly involved in transcriptional silencing by PcG complexes. |
The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. | The p14/p19(ARF) (ARF) product of the CDKN2A gene displays tumor suppressor activity both in the presence and absence of p53/TP53. In p53-negative cells, ARF arrests cell proliferation, at least in part, by suppressing ribosomal RNA synthesis. We show that ARF does this by controlling the subnuclear localization of the RNA polymerase I transcription termination factor, TTF-I. TTF-I shuttles between nucleoplasm and nucleolus with the aid of the chaperone NPM/B23 and a nucleolar localization sequence within its N-terminal regulatory domain. ARF inhibits nucleolar import of TTF-I by binding to this nucleolar localization sequence, causing the accumulation of TTF-I in the nucleoplasm. Depletion of TTF-I recapitulates the effects of ARF on ribosomal RNA synthesis and is rescued by the introduction of a TTF-I transgene. Thus, our data delineate the pathway by which ARF regulates ribosomal RNA synthesis and provide a compelling explanation for the role of NPM.CI - Copyright 2010 Elsevier Inc. All rights reserved. |
Results define a mechanism by which the ARF tumor suppressor targets the translational repression of specific oncogenes during neoplastic transformation. | Vascular endothelial growth factor A (VEGFA) is a specific mitogen for vascular endothelial cells that plays a critical role in cancer neoangiogenesis. Here, we report that the nucleolar tumor suppressor p19(ARF) suppresses VEGFA expression, acting at the level of mRNA translation without affecting the transcription of the VEGFA gene. Translational repression of VEGFA mRNA by p19(ARF) does not require p53, a major target of the ARF tumor suppressor pathway, but instead correlates with binding to nucleophosmin/B23. Maintaining VEGFA expression relies on nucleophosmin/B23, and downregulating this protein by RNAi or p19(ARF) leads to translational repression of VEGFA. p19(ARF) inhibits VEGFA-dependent tumor angiogenesis in nude mice. Additionally, p14(ARF) expression and microvessel density are inversely correlated in human colon carcinomas. Taken together, our results define a mechanism by which the ARF tumor suppressor targets the translational repression of specific oncogenes during neoplastic transformation.CI - Copyright 2010 AACR. |
The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. | Oncogenic stress induces expression of the alternate reading frame (Arf) tumor suppressor protein. Arf then stabilizes p53, which leads to cell cycle arrest or apoptosis. The mechanisms that distinguish both outcomes are incompletely understood. In this study, we show that Arf interacts with the Myc-associated zinc finger protein Miz1. Binding of Arf disrupts the interaction of Miz1 with its coactivator, nucleophosmin, induces the sumoylation of Miz1, and facilitates the assembly of a heterochromatic complex that contains Myc and trimethylated H3K9 in addition to Miz1. Arf-dependent assembly of this complex leads to the repression of multiple genes involved in cell adhesion and signal transduction and induces apoptosis. Our data point to a tumor-suppressive pathway that weakens cell-cell and cell-matrix interactions in response to expression of Arf and that may thereby facilitate the elimination of cells harboring an oncogenic mutation. |
Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. | The p14(ARF) tumor suppressor is frequently targeted for inactivation in many human cancers and in individuals predisposed to cutaneous melanoma. The functions of p14(ARF) are closely linked with its subcellular distribution. Nucleolar p14(ARF) dampens ribosome biosynthesis and nucleoplasmic forms of p14(ARF) activate the p53 pathway and induce cell cycle arrest. p14(ARF) can also be recruited to mitochondria where it interacts with many mitochondrial proteins, including Bcl-x(L) and p32 to induce cell death. It has been suggested that the movement of p14(ARF) to mitochondria requires its interaction with p32, but we now show that the ARF-p32 interaction is not necessary for the accumulation of p14(ARF) in mitochondria. Instead, highly hydrophobic domains within the amino-terminal half of p14(ARF) act as mitochondrial import sequences. We suggest that once this hydrophobic pocket is exposed, possibly in a stimulus-dependent manner, it accelerates the mitochondrial import of p14(ARF). This allows the interaction of p14(ARF) with mitochondrial proteins, including p32 and enables p53-independent cell death. |
CDK inhibitor p16 tumor suppressors were genes activated in early endometrial endometrioid carcinoma (stages I-II). | BACKGROUND: It has been recognized cancer cells acquire characters reminiscent of those of normal stem cells, and the degree of stem cell gene expression correlates with patient prognosis. Lgr5(+) or CD133(+) epithelial stem cells (EpiSCs) have recently been identified and these cells are susceptible to neoplastic transformation. It is unclear, however, whether genes enriched in EpiSCs also contribute in tumor malignancy. Endometrial endometrioid carcinoma (EEC) is a dominant type of the endometrial cancers and is still among the most common female cancers. Clinically endometrial carcinoma is classified into 4 FIGO stages by the degree of tumor invasion and metastasis, and the survival rate is low in patients with higher stages of tumors. Identifying genes shared between advanced tumors and stem cells will not only unmask the mechanisms of tumor malignancy but also provide novel therapeutic targets. RESULTS: To identify EpiSC genes in late (stages III-IV) EECs, a molecular signature distinguishing early (stages I-II) and late EECs was first identified to delineate late EECs at the genomics level. ERBB2 and CCR1 were genes activated in late EECs, while APBA2 (MINT2) and CDK inhibitor p16 tumor suppressors in early EECs. MAPK pathway was significantly up in late EECs, indicating drugs targeting this canonical pathway might be useful for treating advanced EECs. A six-gene mini-signature was further identified to differentiate early from advanced EECs in both the training and testing datasets. Advanced, invasive EECs possessed a clear EpiSC gene expression pattern, explaining partly why these tumors are more malignant. CONCLUSIONS: Our work provides new insights into the pathogenesis of EECs and reveals a previously unknown link between adult stem cells and the histopathological traits of EECs. Shared EpiSC genes in late EECs may contribute to the stem cell-like phenotypes shown by advanced tumors and hold the potential of being candidate therapeutic targets and novel prognosis biomarkers. |
A quantitative model for age-dependent expression of the p16INK4a tumor suppressor. | Recent work has shown that expression of the p16(INK4a) tumor suppressor increases with chronological age. expression is accelerated by gerontogenic behaviors such as tobacco use and physical inactivity, and is also influenced by allelic genotype of a polymorphic single nucleotide polymorphism (SNP) rs10757278 that is physically linked with the p16(INK4a) ORF. To understand the relationship between p16(INK4a) expression, chronologic age, subject characteristics and host genetics, we sought to develop a mathematical model that links p16(INK4a) expression with aging. Using an annotated dataset of 170 healthy adults for whom p16(INK4a) expression and subject genotypes were known, we developed two alternative stochastic models that relate p16(INK4a) expression to age, smoking, exercise and rs10757278 genotype. Levels of p16(INK4a) increased exponentially and then saturated at later chronologic ages. The model, which best fit the data, suggests saturation occurs because of p16(INK4a)-dependent attrition of subjects at older chronologic ages, presumably due to death or chronic illness. An important feature of our model is that factors that contribute to death in a non p16(INK4a)-dependent manner do not affect our analysis. Interestingly, tobacco-related increases in p16(INK4a) expression are predicted to arise from a decrease in the rate of p16(INK4a)-dependent death. This analysis is most consistent with the model that p16(INK4a) expression monotonically increases with age, and higher expression is associated with increased subject attrition. |
"Studies indicate that p53, arf and other tumor suppressors might be barriers to reprogramming somatic cells for the generation of induced pluripotent stem cells." | Genome integrity is a fundamental issue in both cancer and stem cell biology. A series of recent studies revealed that a tumor suppressor p53, which is required for genome integrity, is critical also for stem cell pluripotency and reprogramming, further strengthening the fundamental link between cancer and pluripotency. p53 and other tumor suppressors might be barriers to reprogramming somatic cells for the generation of induced pluripotent stem cells (iPSCs), and simultaneously and systematically destroying these barriers would improve reprogramming efficiency. Therefore, it is also crucial to determine the tumorgenicity of the cells derived from iPSCs for any future therapeutic use. |
"The results unveil a backup tumor suppressor role for p16(Ink4a) in the event of p53 inactivation, expanding our understanding of how p16(Ink4a) expression is regulated in vivo." | expression of the p16(Ink4a) tumor suppressor gene, a sensor of oncogenic stress, is up-regulated by a variety of potentially oncogenic stimuli in cultured primary cells. However, because p16(Ink4a) expression is also induced by tissue culture stress, physiological mechanisms regulating p16(Ink4a) expression remain unclear. To eliminate any potential problems arising from tissue culture-imposed stress, we used bioluminescence imaging for noninvasive and real-time analysis of p16(Ink4a) expression under various physiological conditions in living mice. In this study, we show that oncogenic insults such as ras activation provoke epigenetic derepression of p16(Ink4a) expression through reduction of DNMT1 (DNA methyl transferase 1) levels as a DNA damage response in vivo. This pathway is accelerated in the absence of p53, indicating that p53 normally holds the p16(Ink4a) response in check. These results unveil a backup tumor suppressor role for p16(Ink4a) in the event of p53 inactivation, expanding our understanding of how p16(Ink4a) expression is regulated in vivo. |
Role of the tumor suppressor ARF in oncogenesis | The paper reviews the data available in the literature on a role of the tumor suppressor ARF in oncogenesis and considers the structure of a gene encoding ARF protein. The p53-dependent and p-53-independent functions of this protein are under many studies. There is evidence for the implication of ARF in angiogenesis. There is more and more information on the role of ARF in the regulation of a cell cycle, apoptosis, and autophagy. The importance of this tumor suppressor in the mechanisms of carcinogenesis is beyond question as the inactivation of ARF suppressor activity leads to the rapid growth of neoplasia. However, the exact mechanisms of ARF action yet remain unclear and require further studies by different specialists at both the molecular genetic and other levels of investigation.FAU - Pimkina, Iu S |
Results substantiate the critical role of CTCF in establishing and maintaining p16INK4A and other tumor suppressor genes in higher-order chromosomal domains through appropriate boundary formation. | The p16(INK4a) tumor suppressor gene is a frequent target of epigenetic inactivation in human cancers, which is an early event in breast carcinogenesis. We describe the existence of a chromatin boundary upstream of the p16 gene that is lost when this gene is aberrantly silenced. We show that the multifunctional protein CTCF associates in the vicinity of this boundary and absence of binding strongly coincides with p16 silencing in multiple types of cancer cells. CTCF binding also correlates with RASSF1A and CDH1 gene activation, and CTCF interaction is absent when these genes are methylated and silenced. Interestingly, defective poly(ADP-ribosyl)ation of CTCF and dissociation from the molecular chaperone Nucleolin occur in p16-silenced cells, abrogating its proper function. Thus, destabilization of specific chromosomal boundaries through aberrant crosstalk between CTCF, poly(ADP-ribosyl)ation, and DNA methylation may be a general mechanism to inactivate tumor suppressor genes and initiate tumorigenesis in numerous forms of human cancers. |
p16 might act as a tumor suppressor in colorectal carcinomas and was more frequently methylated in advanced colorectal carcinomas. | BACKGROUND: A tumor suppressor gene, p16, was found to harbor promoter hypermethylation associated with the loss of protein expression in cancer cells, suggesting that p16 inactivation due to promoter methylation was important for colorectal tumorigenesis. MATERIALS AND METHODS: The methylation status of the p16 gene was examined in primary carcinomas and the corresponding normal tissues derived from 50 patients with colorectal cancer using quantitative methylation-specific PCR (qMSP) and the correlation between the methylation status and the clinicopathological findings was evaluated. RESULTS: Aberrant methylation of the p16 gene was detected in 20 out of the 50 (40%) primary colon carcinomas, suggesting that the aberrant methylation of p16 was frequently observed in colorectal carcinomas. The clinicopathological data were then correlated with these results. Significant differences were observed with Dukes' stage (p = 0.0495) and lymphatic invasion (p = 0.0277). CONCLUSION: p16 might act as a tumor suppressor in colorectal carcinomas and was more frequently methylated in advanced colorectal carcinomas. |
CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis. |
BACKGROUND: Only 5% of all breast cancers are the result of BRCA1/2 mutations. Methylation silencing of tumor suppressor genes is well described in sporadic breast cancer; however, its role in familial breast cancer is not known. METHODS: CpG island promoter methylation was tested in the initial random periareolar fine-needle aspiration sample from 109 asymptomatic women at high risk for breast cancer. Promoter methylation targets included RARB (M3 and M4), ESR1, INK4a/ARF, BRCA1, PRA, PRB, RASSF1A, HIN-1, and CRBP1. RESULTS: Although the overall frequency of CpG island promoter methylation events increased with age (P<0.0001), no specific methylation event was associated with age. In contrast, CpG island methylation of RARB M4 (P=0.051), INK4a/ARF (P=0.042), HIN-1 (P=0.044), and PRA (P=0.032), as well as the overall frequency of methylation events (P=0.004), was associated with abnormal Masood cytology. The association between promoter methylation and familial breast cancer was tested in 40 unaffected premenopausal women in our cohort who underwent BRCA1/2 mutation testing. Women with BRCA1/2 mutations had a low frequency of CpG island promoter methylation (15 of 15 women had |
Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. | oncogene-induced senescence is considered to act as a potent barrier to cell transformation, and has been seen in vivo during the early stages of tumor development. Human nevus cells frequently express oncogenic N-RAS or B-RAF, and are thought to be permanently growth arrested. Many studies have suggested that the p16(INK4a) and, to a lesser extent, the p14ARF tumor suppressor proteins act as critical triggers of oncogene-induced senescence in nevi, and thus these proteins represent major inhibitors of progression to melanoma. There have also been reports, however, showing that p16(INK4a) and/or p14ARF is not sufficient to execute the oncogene-induced senescence program. In this study, we examined the impact of melanoma-associated N-RAS(Q61K) on melanocyte senescence and utilized RNA-interference vectors to directly assess the individual contribution of human p14ARF and p16(INK4a) genes to the N-RAS-induced senescence program. We formally show that cultured human melanocytes can initiate an effective oncogene-mediated senescence program in the absence of INK4a/ARF-encoded proteins. Our data are consistent with observations showing that senescent nevus cells do not always express p16(INK4a), and highlight the need to thoroughly explore INK4a/ARF-independent molecular pathways of senescence in human melanocytes. |
The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. | BACKGROUND: CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. RESULTS: We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. CONCLUSION: This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance. |
Methylation status of p16 INK4A tumor suppressor gene in Iranian patients with sporadic breast cancer. | INTRODUCTION: p16(INK4A) is a tumor suppressor encoding the Cdk inhibitor protein, which acts to repress Cdk4/6 and pRb phosphorylation. p16(INK4A) gene can be inactivated by a variety of events, including promoter hypermethylation. MATERIALS AND METHODS: To investigate the methylation status of the p16(INK4A) gene in Iranian patients with breast carcinoma, promoter methylation was studied by methylation-specific PCR (MSP) and restriction enzyme-related PCR (REP). In addition, p16(INK4A) promoter was analyzed by PCR-SSCP in order to detection of mutation and single nucleotide polymorphisms. RESULTS: Analysis of 70 patients by MPS and REP showed hypermethylation of p16(INK4A) promoter in 35.7% (25/70) and 40% (28/70) of samples, respectively. Comparison of the molecular data and pathological information of the samples suggested that p16(INK4A) gene might be inactivated at the early stages in breast cancer. CONCLUSION: Therefore, it could be suggested that hypermethylation of p16(INK4A) promoter is one of the epigenetic factors affecting the progress of sporadic breast carcinogenesis in Iranian patients. |
RAF may induce cell proliferation through hypermethylation of tumor suppressor gene p16INK4A | The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) is critical in human malignancies. It remained to be established whether DNA methyltransferases (Dnmt) and proliferating cell nuclear antigen (PCNA) involved in DNA methylation during RAF-transformed cell proliferation. The plasmid of constitutively active RAF was used to transfect gastric cell GES-1 and cancer cell AGS. RAF promoted cell proliferation, growth in soft agar and induced cell cycle progress faster than empty plasmid by accelerating G1/S transition in both cell lines, a massive induction of cyclin D1 and PCNA expression was observed, along with reduced expression of p16INK4A, p21WAF1 and p27KIP1. Methylation-specific polymerase chain reaction and bisulfite sequencing showed that the promoter of p16INK4A was methylated in RAF-transformed cells, treatment with 5-aza-dC or PD98059 restored the expression of p16INK4A, increased p21WAF1 and p27KIP1 partially, associated with upregulation of the activity of Dnmt in RAF-transformed cell GES-1, and also decreased the hypermethylation status of p16INK4A, but not all CpG islands of p21WAF1 and p27KIP1. These data suggest that RAF may induce cell proliferation through hypermethylation of tumor suppressor gene p16INK4A, while the epigenetic inactivation of p21WAF1 and p27KIP1 may be not a key factor in RAF-transformed cells. |
These findings implicate MBD2 in transcriptional repression of the methylated p14(ARF) tumor suppressor gene and suggest that repression by MBD2 selectively affects a subset of methylated promoters. | OBJECTIVE: The p14(ARF) and p16(INK4A) tumor suppressor genes are commonly inactivated by aberrant methylation of their promoter regions in human colon cancer. The methyl-CpG-binding domain protein MBD2 is physically associated with the methylated promoters of the p14(ARF) and p16(INK4A) genes in specific tumor cell lines. Moreover, deficiency of MBD2 strongly inhibits intestinal tumorigenesis in the Min mouse, raising the possibility that the protein might be involved in transcriptional repression of methylated tumor suppressor genes. The aim of this study was to evaluate the role of MBD2 in the silencing of p14(ARF) and p16(INK4A) in cancer. METHODS: The MBD2 protein was stably knocked down by RNA interference in RKO, a colon cancer cell line in which both p14(ARF) and p16(INK4A) are silenced by methylation. RESULTS: We demonstrate here that MBD2 associates with the methylated promoter of the p14(ARF) gene in the RKO colon cancer cell line. Depletion of MBD2 by RNAi leads to selective upregulation of the p14(ARF) but not the p16(INK4A) gene transcript. In addition, p14(ARF) repression can be restored by expressing mouse MBD2 protein in MBD2-deficient RKO cells. CONCLUSION: These findings implicate MBD2 in transcriptional repression of the methylated p14(ARF) tumor suppressor gene and suggest that repression by MBD2 selectively affects a subset of methylated promoters.CI - Copyright 2008 S. Karger AG, Basel. |
"Data demonstrate that Bmi1 promotes prostate tumorigenesis, and that Bmi1 expression is associated with a reduction in tumor suppressors p16(INK4A) and p14(ARF)." | We report here that the polycomb group protein Bmi1 promotes prostate tumorigenesis. Bmi1 is detected at higher levels in androgen-independent PC3 and DU145 than in androgen-dependent LNCaP prostate cancer (CaP) cells. Ectopic Bmi1 enhanced the expression of human telomerase reverse transcriptase (hTERT) and suppressed the exression of p16(INK4A) and p14(ARF) in CaP cells. Consistent with these observations, immunohistochemical staining of 51 cases of primary CaP specimens revealed 1.4 fold (p=0.014) and 1.3 fold (p=0.051) higher levels of Bmi1-positive cells in carcinoma compared to normal prostatic epithelial cells and PIN, respectively. In primary CaPs, Bmi1 expression was associated with a reduction in p16(INK4A) and p14(ARF). Furthermore, in comparison to empty vector-transfected cells, Bmi1-expressing DU145 cells formed significantly larger tumors in NOD/SCID mice. Taken together, we demonstrate that Bmi1 promotes prostate tumorigenesis. |
COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. | The p16/pocket-protein pathway sets a balance between tumor suppression and capacity for tissue regeneration. Understanding the upstream signaling pathway that turns on the expression of p16 is required both for knowing the tumorigenic stresses from which this pathway provides protection and for appreciating the selective pressure that leads to the loss of this pathway in most human tumors. We report that COOH-terminal binding protein (CtBP), a physiologically regulated transcriptional corepressor that dimerizes to hold together repressive complexes, regulates p16 expression in primary human fibroblasts and keratinocytes. Interfering with CtBP-mediated repression increased p16 expression and accelerated senescence. CtBP had little influence on the expression of the alternate product of the CDKN2A tumor-suppressor gene, p14(ARF). Loss of CtBP-mediated repression diminished the Polycomb-based epigenetic histone mark that is reported to favor silencing of p16 via DNA methylation. Enhancing CtBP-mediated repression by growing cells in low oxygen increased the association of CtBP with the p16 promoter, as assessed by chromatin immunoprecipitation, and reduced p16 expression. Stresses and stimuli that reduce CtBP-mediated repression are associated with increased p16 expression; therefore, CtBP may provide a common final target for regulating the balance among tumor suppression, regenerative capacity, and senescence. |
Frequent and variable abnormalities in p14 tumor suppressor gene in glioma cell lines. | Ten glioma cell lines were examined for abnormalities of exon 1beta of the p14 gene and then for abnormalities of the entire p14 gene with the use of previous findings of other exons. Abnormalities of exon 1beta and the entire p14 gene were detected in eight of ten cases: homozygous deletion of the entire gene in six cases, hemizygous deletion of exon 1beta with homozygous deletion of downstream exons in one case, and hemizygous deletion of the entire coding region with a missense mutation (A97V) at the C-terminal nucleolar localization domain in one case. The remaining two cases revealed no such abnormalities. p14 gene expression was observed in the latter two cases and one case with A97V mutation in the hemizygously deleted coding region, but not in the others, including one case with only exon 1beta. In the three cases with p14 gene expression, immunocytochemistry revealed p14 nucleolar staining, suggesting the retention of the functional activity of p14 protein and, in the case with the A97V mutation, an insufficient mutational effect as well. The present findings of the frequent and variable p14 gene abnormalities, including rare-type ones with or without sufficient mutational effect in glioma cell lines, might be of value for better understanding of the p14 gene and its related pathways in glioma carcinogenesis. |
Genistein induces the expression of tumor suppressor genes p21 (WAF1/CIP1/KIP1) and p16 (INK4a) with a concomitant decrease in cyclins in prostate cancer cells. | Genistein (4',5,7-trihydroxyisoflavone) is the most abundant isoflavone found in the soybean. The effects of genistein on various cancer cell lines have been extensively studied but the precise molecular mechanisms are not known. We report here the epigenetic mechanism of the action of genistein on androgen-sensitive (LNCaP) and androgen-insensitive (DuPro) human prostate cancer cell lines. Genistein induced the expression of tumor suppressor genes p21 (WAF1/CIP1/KIP1) and p16 (INK4a) with a concomitant decrease in cyclins. There was a G(0)-G(1) cell cycle arrest in LNCaP cells and a G(2)-M arrest in DuPro cells after genistein treatment. Genistein also induced apoptosis in DuPro cells. DNA methylation analysis revealed the absence of p21 promoter methylation in both cell lines. The effect of genistein on chromatin remodeling has not been previously reported. We found that genistein increased acetylated histones 3, 4, and H3/K4 at the p21 and p16 transcription start sites. Furthermore, we found that genistein treatment also increased the expression of histone acetyl transferases that function in transcriptional activation. This is the first report on epigenetic regulation of various genes by genistein through chromatin remodeling in prostate cancer. Altogether, our data provide new insights into the epigenetic mechanism of the action of genistein that may contribute to the chemopreventive activity of this dietary isoflavone and have important implications for epigenetic therapy. |
These findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate tumor suppressor role for p18(INK4C) in human glioblastoma wherein it functions cooperatively with other INK4 family. | We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18(INK4C) and p16(INK4A) codeletion. Functional reconstitution of p18(INK4C) in GBM cells null for both p16(INK4A) and p18(INK4C) resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18(INK4C) in p16(INK4A)-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16(INK4A) in primary astrocytes induced a concomitant increase in p18(INK4C). Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18(INK4C) in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation. |
Tumor suppressor ARF promotes non-classic proteasome-independent polyubiquitination of COMMD1. | Although the tumor suppressor ARF is generally accepted for its essential role in activating the p53 pathway, its p53-independent function has also been proposed. Here, we report that ARF associates with COMMD1 and promotes Lys(63)-mediated polyubiquitination of COMMD1 in a p53-independent manner. We found that ARF interacts with COMMD1 in vivo. Deletion analysis of ARF suggested that the N-terminal amino acids 15-45 are important for its interaction with COMMD1. In addition, we found that endogenous ARF redistributes from the nucleolus to the nucleoplasm and interacts with COMMD1 when DNA is damaged by actinomycin D. Interestingly, we found that ARF promotes the polyubiquitination of COMMD1 through Lys(63) of ubiquitin but not the polyubiquitination of Lys(48), which does not target COMMD1 for proteasome-dependent proteolysis. Moreover, ARF mutants lacking the domain interacting with COMMD1 did not promote COMMD1 polyubiquitination, indicating that physical association is a prerequisite condition for the polyubiquitination process. Together, these data suggest that the ability to promote Lys(63)-mediated polyubiquitination of COMMD1 is a novel property of ARF independent of p53. |
Results indicate that TBX3 represses expression of p14(ARF) tumor suppressor in breast cancer. | TBX3 is a transcription factor of the T-box gene family. mutations in the TBX3 gene can cause hypoplastic or absent mammary glands. Previous studies have shown that TBX3 might be associated with breast cancer. Here, we show that TBX3 is overexpressed in malignant cells of primary breast cancer tissues by immunohistochemistry. TBX3 interacts with histone deacetylases (HDAC) 1, 2, 3, and 5. TBX3 interacts with HDAC1, 2, and 3 via two distinct binding sites. However, deletion of the repression domain (amino acids 566-624) of TBX3 completely abolishes its interaction with HDAC5. Endogenous TBX3 and HDACs interaction and colocalization are found in a breast cancer cell line by coimmunoprecipitation and immunofluorescence, respectively. The functional significance of the interaction between TBX3 and HDAC is also tested in a p14(ARF)-luciferase reporter system. Results indicate that TBX3 represses expression of p14(ARF) tumor suppressor and that a HDAC inhibitor is able to reverse the TBX3 repressive function in a dosage-dependent manner. This study suggests that TBX3 may function by recruiting HDACs to the T-box binding site in the promoter region. TBX3 repression to its targets is dependent on HDAC activity. TBX3 may serve as a biomarker for breast cancer and have significant applications in both breast cancer diagnosis and treatment. |
Reactivation of methylation-silenced tumor suppressor gene p16INK4a by nordihydroguaiaretic acid and its implication in G1 cell cycle arrest. | Phytoestrogens, including the two major groups isoflavones and lignans, are chemicals with weak estrogenic activity which occur naturally in many foods and herbs. Recently, several intriguing studies reported that some isoflavones can affect DNA methylation status. However, little is known about the effect of plant lignans on epigenetic modification. Using cultured T47D and RKO human cancer cells as a model, we studied the modulating effects of nordihydroguaiaretic acid (NDGA), a member of the lignan family, on the methylation status of the gene promoter region. Our results indicated that NDGA reverses p16INK4a CpG island hypermethylation, and restores its transcription and expression in both cell lines. Cytometric analysis showed that NDGA significantly affects cell cycle progression by arresting cells at the G1 phase. Consistent with the reacquisition of p16INK4a expression, we also found that NDGA induces cellular senescence in cancer cells. This is the first study demonstrating that a member of the lignan family can induce demethylation in human cancer cell lines, suggesting a novel epigenetic mechanism in the prevention or treatment of cancer. |
Serine phosphorylation-dependent coregulation of topoisomerase I by the p14ARF tumor suppressor. | p14ARF (ARF) and topoisomerase I play central roles in cancer and have recently been shown to interact. The interaction activates topoisomerase I, an important target for camptothecin-like chemotherapeutic drugs, but the regulation of the interaction is poorly understood. We have used the H358 and H23 lung cancer cell lines and purified recombinant human topoisomerase I to demonstrate that the ARF/topoisomerase I interaction is regulated by topoisomerase I serine phosphorylation, a modification that regulates topoisomerase I activity. Both cell lines express wild-type ARF and topoisomerase I proteins at equivalent levels, but H23 topoisomerase I, unlike that of H358 cells, is largely devoid of serine phosphorylation, has low activity, and complexes poorly with ARF. The ability of H23 topoisomerase I to complex with ARF can be restored by treatment with the serine kinase, casein kinase II. Consistent with these observations, we show that the response of H23 cells to camptothecin treatment is unaffected by changes in intracellular levels of ARF. However, in H358 and PC-3 cells, which express a serine phosphorylated topoisomerase I that complexes with ARF, ectopic overexpression of ARF causes sensitization to camptothecin, and siRNA-mediated down-regulation of endogenous ARF causes desensitization to camptothecin. These biological responses correlate with increased and decreased levels, respectively, of ARF/topoisomerase I complex and DNA-bound topoisomerase I. Thus, ARF is a serine phosphorylation-dependent coregulator of topoisomerase I in vivo, and it regulates cellular sensitivity to camptothecin by interacting with topoisomerase I. Certain cancer associated defects affecting ARF/topoisomerase I complex formation could contribute to cellular resistance to camptothecin. |
"Loss of heterozygosity (LOH) of the hDMP1 gene was detectable in approximately 35% of human lung carcinomas, which was found in mutually exclusive fashion with LOH of INK4a/ARF or that of P53. DMP1 is a pivotal tumor suppressor for human lung cancers." | Dmp1 (Dmtf1) is activated by oncogenic Ras-Raf signaling and induces cell-cycle arrest in an Arf, p53-dependent fashion. The survival of K-ras(LA) mice was shortened by approximately 15 weeks in both Dmp1(+/-) and Dmp1(-/-) backgrounds, the lung tumors of which showed significantly decreased frequency of p53 mutations compared to Dmp1(+/+). Approximately 40% of K-ras(LA) lung tumors from Dmp1(+/+) mice lost one allele of the Dmp1 gene, suggesting the primary involvement of Dmp1 in K-ras-induced tumorigenesis. Loss of heterozygosity (LOH) of the hDMP1 gene was detectable in approximately 35% of human lung carcinomas, which was found in mutually exclusive fashion with LOH of INK4a/ARF or that of P53. Thus, DMP1 is a pivotal tumor suppressor for both human and murine lung cancers. |
the tumor suppressor activity of ARF in melanoma-genesis is p53 independent [news] | Angiogenesis has a critical role in the pathophysiology of multiple myeloma (MM); however, the molecular mechanisms underlying this process are not completely elucidated. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) has been recently implicated in solid tumors as a repressor of angiogenesis. In this study, we found that ING4 expression in MM cells was correlated with the expression of the proangiogenic molecules interleukin-8 (IL-8) and osteopontin (OPN). Moreover, we demonstrate that ING4 suppression in MM cells up-regulated IL-8 and OPN, increasing the hypoxia inducible factor-1alpha (HIF-1alpha) activity and its target gene NIP-3 expression in hypoxic condition. In turn, we show that the inhibition of HIF-1alpha by siRNA suppressed IL-8 and OPN production by MM cells under hypoxia. A direct interaction between ING4 and the HIF prolyl hydroxylase 2 (HPH-2) was also demonstrated. Finally, we show that ING4 suppression in MM cells significantly increased vessel formation in vitro, blunted by blocking IL-8 or OPN. These in vitro observations were confirmed in vivo by finding that MM patients with high IL-8 production and microvascular density (MVD) have significantly lower ING4 levels compared with those with low IL-8 and MVD. Our data indicate that ING4 exerts an inhibitory effect on the production of proangiogenic molecules and consequently on MM-induced angiogenesis. |
"P16INK4A is overexpressed in HR-HPV-infected cervical cancer, but its tumor suppressor action might be inhibited." | BACKGROUND & OBJECTIVE: High-risk human papillomavirus (HR-HPV) is the most important etiologic factor for cervical cancer. Recent studies have revealed that abnormal expression of tumor suppressor gene P16INK4A is closely associated with HR-HPV infection during carcinogenesis of cervical epithelium. tumor suppressor gene PTEN is also involved in cervical tumorigenesis. This study was to investigate the correlations of HR-HPV infection to P16INK4A and PTEN expression and its clinical significance in the carcinogenesis of cervical epithelium. METHODS: The expression of P16INK4A and PTEN in 30 specimens of normal cervical tissues, 11 specimens of cancer in situ (CIS), and 24 specimens of invasive cervical carcinoma (ICC) was detected by SP immunohistochemistry; 13 types of HR-HPV DNA in these cases were detected by Hybrid Capture 2 (HC-2) assay. RESULTS: The positive rates of HR-HPV and P16INK4A were significantly higher in ICC and CIS than in normal tissues (91.7% and 90.9% vs. 30.0%, P<0.001; 87.5% and 81.8% vs. 6.7%, P<0.001). Both HR-HPV DNA and P16INK4A overexpression (moderate or strong expression) were observed simultaneously in 21 specimens of ICC and 9 specimens of CIS; they were simultaneously negative in 20 specimens of normal cervical tissues and 1 specimen of CIS and 2 specimens of ICC. Overexpression of P16INK4A was positively correlated to HR-HPV infection in cervical cancer (rs = 0.690, P<0.001). PTEN was moderately or strongly expressed in 26 specimens of normal cervical tissues. The positive rate of PTEN was significantly lower in ICC and CIS than in normal cervical tissues (37.5% and 36.4% vs. 83.3%, P<0.01). No obvious relationship between PTEN and HR-HPV was found (rs = -0.174, P = 0.167). CONCLUSIONS: P16INK4A is overexpressed in HR-HPV-infected cervical cancer, but its tumor suppressor action might be inhibited. In contrast, the functional down-regulation of PTEN contributes to cervical tumorigenesis through HR-HPV-independent mechanism. |
combined with screening of K-ras mutations and allelic losses of tumor suppressors p16 and DPC4 represents a very sensitive approach in screening for pancreatic malignancy. | AIM: To establish an optimum combination of molecular markers resulting in best overall diagnostic sensitivity and specificity for evaluation of suspicious pancreatic mass. METHODS: Endoscopic ultrasound (EUS)-guided fine needle aspiration cytology (FNA) was performed on 101 consecutive patients (63 males, 38 females, 60 +/- 12 years; 81 with subsequently diagnosed pancreatic cancer, 20 with chronic pancreatitis) with focal pancreatic mass. Samples were evaluated on-site by an experienced cytopathologist. DNA was extracted from Giemsa stained cells selected by laser microdissection and the presence of K-ras, p53 and p16 somatic mutations was tested by cycling-gradient capillary electrophoresis (CGCE) and single-strand conformation polymorphism (SSCP) techniques. In addition, allelic losses of tumor suppressor genes p16 (INK4, CDKN2A) and DPC4 (MADH4, SMAD4) were detected by monitoring the loss of heterozygosity (LOH) at 9p and 18q, respectively. RESULTS: Sensitivity and specificity of EUS-guided FNA were 75% and 85%, positive and negative predictive value reached 100%. The remaining 26% samples were assigned as inconclusive. Testing of molecular markers revealed sensitivity and specificity of 70% and 100% for K-ras mutations (P < 0.001), 24% and 90% for p53 mutations (NS), 13% and 100% for p16 mutations (NS), 85% and 64% for allelic losses at 9p (P < 0.001) and 78% and 57% for allelic losses at 18q (P < 0.05). When tests for different molecular markers were combined, the best results were obtained with K-ras + LOH at 9p (92% and 64%, P < 0.001), K-ras + LOH at 18q (92% and 57%, P < 0.001), and K-ras + LOH 9q + LOH 18q (96% and 43%, P < 0.001). When the molecular markers were used as complements to FNA cytology to evaluate inconclusive samples only, the overall sensitivity of cancer detection was 100% in all patients enrolled in the study. CONCLUSION: EUS-guided FNA cytology combined with screening of K-ras mutations and allelic losses of tumor suppressors p16 and DPC4 represents a very sensitive approach in screening for pancreatic malignancy. Molecular markers may find its use particularly in cases where FNA cytology has been inconclusive. |
"ISOC2 is a novel functional protein, which is able to bind and co-localize with a tumor suppressor gene p16(INK4a)." | p16(INK4a) is a multiple tumor suppressor, playing an important role in proliferation and tumorigenesis. To screen the p16(INK4a)-associated proteins, we performed a yeast two-hybrid assay and identified a novel protein isochorismatase domain containing 2 (ISOC2). ISOC2 conserves in different species, and encodes 205 and 210 amino acids in human and mouse, respectively. The expression of ISOC2 in mouse is universal but predominantly in uterus, stomach, and urinary tract system. Interaction between ISOC2 and p16(INK4a) was verified using in vitro pull-down assays and in vivo co-immunoprecipitation. Confocal microscopy studies using green and cyan fluorescent fusion proteins determined that ISOC2 co-localizes with p16(INK4a). Over-expressed ISOC2 is able to inhibit p16(INK4a) in dose-dependent manner. Our data indicated that ISOC2 is a novel functional protein, which is able to bind and co-localize with a tumor suppressor gene p16(INK4a). Over-expressed ISOC2 inhibits the expression of p16(INK4a), suggesting that this novel gene may play a role during the tumor development by interacting with p16(INK4a). |
Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. | expression of the tumor suppressor p16(INK4a) after stable transfection can restore the susceptibility of epithelial tumor cells to anoikis. This property is linked to increases in the expression and cell-surface presence of the fibronectin receptor. Considering its glycan chains as pivotal signals, we assumed an effect of p16(INK4a) on glycosylation. To test this hypothesis for human Capan-1 pancreatic carcinoma cells, we combined microarray for selected glycosyltransferase genes with 2D chromatographic glycan profiling and plant lectin binding. Major differences between p16-positive and control cells were detected. They concerned expression of beta1,4-galactosyltransferases (down-regulation of beta1,4-galactosyltransferases-I/V and up-regulation of beta1,4-galactosyltransferase-IV) as well as decreased alpha2,3-sialylation of O-glycans and alpha2,6-sialylation of N-glycans. The changes are compatible with increased beta(1)-integrin maturation, subunit assembly and binding activity of the alpha(5)beta(1)-integrin. Of further functional relevance in line with our hypothesis, we revealed differential reactivity towards endogenous lectins, especially galectin-1. As a result of reduced sialylation, the cells' capacity to bind galectin-1 was enhanced. In parallel, the level of transcription of the galectin-1 gene increased conspicuously in p16(INK4a)-positive cells, and even figured prominently in a microarray on 1996 tumor-associated genes and in proteomic analysis. The cells therefore gain optimal responsiveness. The correlation between genetically modulated galectin-1 levels and anoikis rates in engineered transfectants inferred functional significance. To connect these findings to the fibronectin receptor, galectin-1 was shown to be co-immunoprecipitated. We conclude that p16(INK4a) orchestrates distinct aspects of glycosylation that are relevant for integrin maturation and reactivity to an endogenous effector as well as the effector's expression. This mechanism establishes a new aspect of p16(INK4a) functionality. |
p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. | Inactivation of the CDKN2 genes that encode the p16(INK4A) and p14(ARF) proteins occurs in the majority of human T-cell acute lymphoblastic leukemias (T-ALLs). Ectopic expression of TAL1 and LMO1 genes is linked to the development of T-ALL in humans. In TAL1xLMO1 mice, leukemia develops in 100% of mice at 5 months. To identify the molecular events crucial to leukemic transformation, we produced several mouse models. We report here that expression of P16(INK4A) in developing TAL1xLMO1 thymocytes blocks leukemogenesis in the majority of the mice, and the leukemias that eventually develop show P16(INK4A) loss of expression. Events related to the T-cell receptor beta selection process are thought to be important for leukemic transformation. We show here that the absence of the pTalpha chain only slightly delays the appearance of TAL1xLMO1-induced T-ALL, which indicates a minor role of the pTalpha chain. We also show that the CD3epsilon-mediated signal transduction pathway is essential for this transformation process, since the TAL1xLMO1xCD3epsilon-deficient mice do not develop T-ALL for up to 1 year. |
Clinicopathological roles of alterations of tumor suppressor gene p16 in papillary thyroid carcinoma. | BACKGROUND: Alterations of the p16 gene are common in human cancers, but their roles in thyroid cancers have not been clearly defined. The aim of the present study was to investigate the clinicopathological roles of the p16 gene in papillary thyroid carcinoma (PTC). METHODS: p16 gene alterations were investigated in 44 patients with PTC (9 men, 35 women) by immunohistochemistry, reverse transcriptase-polymerase chain reaction and methylation-specific polymerase chain reaction. The findings were correlated with their clinicopathological features. RESULTS: p16 protein expression, mRNA alterations, and promoter methylation were detected in 89% (n = 39), 77% (n = 33), and 41% (n = 18) of patients with PTC, respectively. There was no marked relationship between p16 protein expression, mRNA alteration, and promoter methylation. In follicular variant of PTC (FVPTC), there was a frequent lack of p16 protein expression and promoter methylation. PTCs showing p16 promoter methylation were often associated with a high AMES (age, metastasis to distant sites, extrathyroidal invasion, size) risk group and advanced pTNM (tumor-lymph node-metastasis) stages. CONCLUSIONS: p16 gene alterations are common and correlate with histological features and biological aggressiveness in PTC, suggesting that they might play an important role in its pathogenesis. |
Physical and functional interaction of the p14ARF tumor suppressor with ribosomes. | Alterations in the p14(ARF) tumor suppressor are frequent in many human cancers and are associated with susceptibility to melanoma, pancreatic cancer, and nervous system tumors. In addition to its p53-regulatory functions, p14(ARF) has been shown to influence ribosome biogenesis and to regulate the endoribonuclease B23, but there remains considerable controversy about its nucleolar role. We sought to clarify the activities of p14(ARF) by studying its interaction with ribosomes. We show that p14(ARF) and B23 interact within the nucleolar 60 S preribosomal particle and that this interaction does not require rRNA. In contrast to previous reports, we found that expression of p14(ARF) does not significantly alter ribosome biogenesis but inhibits polysome formation and protein translation in vivo. These results suggest a ribosome-dependent p14(ARF) pathway that regulates cell growth and thus complements p53-dependent p14(ARF) functions. |
Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation. | The nucleolar Arf protein has been shown to regulate cell cycle through both p53-dependent and -independent pathways. In addition to the well-characterized Arf-mdm2-p53 pathway, several partners of Arf have recently been described that could participate in alternative regulation process. Among those is the nucleolar protein B23/NPM, involved in the sequential maturation of rRNA. p19ARF can interact with B23/NPM in high molecular complexes and partially inhibit the cleavage of the 32S rRNA, whereas the human p14ARF protein has been shown to participate in the degradation of NPM/B23 by the proteasome. These data led to define Arf as a negative regulator of ribosomal RNA maturation. Our recent finding that the human p14ARF protein was able to specifically interact with the rRNA promoter in a p53-independent context, led us to analyse in vitro and in vivo the consequences of this interaction. Luciferase assay and pulse-chase experiments demonstrated that the rRNA transcription was strongly reduced upon p14ARF overexpression. Investigations on potential interactions between p14ARF and the transcription machinery proteins demonstrated that the upstream binding factor (UBF), required for the initiation of the transcriptional complex, was a new partner of the p14ARF protein. We next examined the phosphorylation status of UBF as UBF phosphorylation is required to recruit on the promoter factors involved in the transcriptional complex. Upon p14ARF overexpression, UBF was found hypophosphorylated, thus unable to efficiently recruit the transcription complex. Taken together, these data define a new p53-independent pathway that could regulate cell cycle through the negative control of rRNA transcription. |
Induction of the tumor-suppressor p16(INK4a) within regenerative epithelial crypts in ulcerative colitis. | p16(INK4a) is a major tumor-suppressor protein, but its regulation and settings of fuction remain poorly understood. To explore the notion that p16 is induced in vivo in response to replicative stress, we examined p16 expression in tissues from human ulcerative colitis (UC; n = 25) and normal controls (n = 20). p16 was expressed strongly in UC-associated neoplasms (n = 17), as seen previously in sporadic colonic neoplasms. In non-neoplastic UC epithelium, p16 was expressed in 33% of crypts (the proliferative compartment) compared to < 1% of normal controls. p16 expression did not correlate with degree of inflammation but did correlate with the degree of crypt architecture distortion (P = .002)-a reflection of epithelial regeneration. In coimmunofluorescence studies with Ki67, p16 expression was associated with cell cycle arrest (P < .001). Both UC and normal crypts displayed evidence for the activation of the DNA damage checkpoint pathway, and p16 was induced in primary cultures of normal epithelial cells by ionizing irradiation (IR). However, induction by IR displayed delayed kinetics, implying that p16 is not an immediate target of the checkpoint pathway. These findings support a model in which p16 is induced as an "emergency brake" in cells experiencing sustained replicative stress. |
Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. | Alterations in DNA methylation are important in cancer, but the acquisition of these alterations is poorly understood. Using an unbiased global screen for CpG island methylation events, we have identified a non-random pattern of DNA hypermethylation acquired in p16-repressed cells. Interestingly, this pattern included loci located upstream of a number of homeobox genes. Upon removal of p16(INK4A) activity in primary human mammary epithelial cells, polycomb repressors, EZH2 and SUZ12, are up-regulated and recruited to HOXA9, a locus expressed during normal breast development and epigenetically silenced in breast cancer. We demonstrate that at this targeted locus, the up-regulation of polycomb repressors is accompanied by the recruitment of DNA methyltransferases and the hypermethylation of DNA, an endpoint, which we show to be dependent on SUZ12 expression. These results demonstrate a causal role of p16(INK4A) disruption in modulating DNA hypermethylation, and identify a dynamic and active process whereby epigenetic modulation of gene expression is activated as an early event in breast tumor progression. |
The high frequency of methylation of the CDKN2A gene promoter suggests that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis. | BACKGROUND: Methylation in the promoter region of genes is an important mechanism of inactivation of tumor suppressor genes. Our objective was to analyze the methylation pattern of some of the genes involved in carcinogenesis of the gallbladder, examining the immunohistochemical expression of proteins, clinical features, and patient survival time. METHODS: Twenty cases of gallbladder cancer were selected from the frozen tumor bank. The DNA extracted was analyzed by means of a methylation-specific polymerase chain reaction test for the CDKN2A (p16), MLH1, APC, FHIT, and CDH1 (E-cadherin) genes. Morphological and clinical data and follow-up information were obtained. RESULTS: All cases were in an advanced stage: histologically moderate or poorly differentiated tumors (95%). Methylation of the promoter area of genes was observed in 5%, 20%, 30%, 40%, and 65% of cases, and an altered immunohistochemical pattern (AIP) in 5%, 35%, 21%, 25%, and 66% for the MLH1, CDKN2A, FHIT, APC, and CDH1 genes, respectively. The Kappa concordance index between methylation of the promoter area and AIP for the MLH1 and CDH1 genes was very high (K > 0.75) and substantial for APC (K > 0.45). No correlation was found between survival time and the methylation of the genes studied. CONCLUSIONS: The high frequency of gene methylation (with the exception of MLH1) and the high agreement between AIP and methylation of the gene promoter area for the MLH1, APC, and CDH1 genes suggest that the inactivation of tumor suppressor genes and of the genes related to the control of cellular proliferation through this mechanism is involved in gallbladder carcinogenesis. |
The expression of p16INK4a tumor suppressor is upregulated by human cytomegalovirus infection and required for optimal viral replication. | The human cytomegalovirus (HCMV) induces a replicative senescence program after arresting host cell cycle progression so as to create a favorable environment for its replication. Here, we report that HCMV infection stimulates the expression of p16(INK4a), a direct effector of the senescence phenotype. The increase in p16(INK4a) gene expression was due to an increase in gene transcription, since the expression of a reporter gene driven by the p16(INK4a)-encoding CDKN2A gene promoter was strongly induced by HCMV infection. The results of deletion and mutational analysis of the CDKN2A promoter further suggest the involvement of Ets transcription factors in HCMV-mediated stimulation of p16(INK4a) gene expression. The significance of p16(INK4a) upregulation during the HCMV replicative cycle is underscored by the finding that virus replication was severely impaired in fibroblasts homozygous for an intragenic deletion in CDKN2A locus and devoid of functional p16(INK4a). Moreover, a retrovirus-mediated p16(INK4a) small interfering RNA (p16-siRNA) effectively reduced viral replication, thus providing direct evidence that p16(INK4a) upregulation plays a positive role for HCMV replication. |
regulation of p14(ARF) gene by E2F is distinct from that of classical E2F targets; results indicate that the distinct regulation constitutes the basis of p14(ARF) function as a tumor suppressor | The tumor suppressor p14(ARF) gene is induced by ectopically expressed E2F, a positive regulator of the cell cycle. The gene is expressed at low levels in normally growing cells in contrast to high levels in varieties of tumors. How p14(ARF) gene is regulated by E2F in normally growing cells and tumor cells remains obscure. Here we show that regulation of p14(ARF) gene by E2F is distinct from that of classical E2F targets. It is directly mediated by E2F through a novel E2F-responsive element that varies from the typical E2F site. The element responds to E2F activity resulting from ectopic E2F1 expression, inactivation of pRb by adenovirus E1a or shRNA, but not to phosphorylation of pRb by serum stimulation or ectopic cyclin D1/cyclin-dependent kinase-4 expression in normal human fibroblasts. The element has activity in various tumor cells with defective pRb, but not in normally growing cells. These results indicate that the distinct regulation constitutes the basis of p14(ARF) function as a tumor suppressor, discriminating abnormal growth signals caused by defects in pRb function from normal growth signals. |
The tumor suppressor p16(INK4a) prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. | Inactivation of the p16(INK4a) tumor suppressor protein is critical for the development of human cancers, including human melanoma. However, the molecular basis of the protein's inhibitory effect on cancer development is not clear. Here we investigated a possible mechanism for p16(INK4a) inhibition of neoplastic transformation and UV-induced skin cancer. We show that p16(INK4a) suppresses the activity of c-Jun N-terminal kinases (JNKs) and that it binds to the glycine-rich loop of the N-terminal domain of JNK3. Although p16(INK4a) does not affect the phosphorylation of JNKs, its interaction with JNK inhibits c-Jun phosphorylation induced by UV exposure. This, in turn, interferes with cell transformation promoted by the H-Ras-JNK-c-Jun-AP-1 signaling axis. |
Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. | BACKGROUND: Cell cycle inhibitor and tumor suppressor gene p16/MTS-1 has been reported to be altered in a variety of human tumors. The purpose of the study was to evaluate primary pancreatic ductal adenocarcinomas for potentially inactivating p16 alterations. METHODS: We investigated the status of p16 gene by polymerase chain reaction (PCR), nonradioisotopic single strand conformation polymorphism (SSCP), DNA sequencing and hypermethylation analysis in 25 primary resected ductal adenocarcinomas. In addition, we investigated p16 protein expression in these cases by immunohistochemistry (IHC) using a monoclonal antibody clone (MS-887-PO). RESULTS: Out of the 25 samples analyzed and compared to normal pancreatic control tissues, the overall frequency of p16 alterations was 80% (20/25). Aberrant promoter methylation was the most common mechanism of gene inactivation present in 52% (13/25) cases, followed by coding sequence mutations in 16% (4/25) cases and presumably homozygous deletion in 12% (3/25) cases. These genetic alterations correlated well with p16 protein expression as complete loss of p16 protein was found in 18 of 25 tumors (72%). CONCLUSION: These findings confirm that loss of p16 function could be involved in pancreatic cancer and may explain at least in part the aggressive behaviour of this tumor type. |
Aberrant expression of tumor suppressor genes and their association with chimeric oncogenes in pediatric acute lymphoblastic leukemia. | Aberrant expression of tumor suppressor genes WT 1, RB 1, p53, homozygous deletion of p16 gene and their relationship with expression of oncogenes BCR-ABL, TEL-AML 1, MLL-AF 4, E2A-PBX 1, SIL-TAL 1 were determined in bone marrow samples of children with de novo B-lineage (n=170) and T-lineage (n=25) acute lymphoblastic leukemia (ALL). In contrast to expression of chimeric oncogenes alterations in p16, WT 1, RB 1 and p53 expression were T/B-lineage-unrestricted. Significant association between expression of MLL-AF 4 and WT 1, E2A-PBX 1 and p53; SIL-TAL 1 and homozygous deletion of p16 has been demonstrated. |
Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues. | It is known that p16(INK4) tumor suppressor gene expression in colon cancer cells is repressed by methylation at the CpG island of promoter, but in vivo silencing of p16 gene is not fully understood. Some studies showed that primary colorectal cancer (CRC) tissues often overexpress the p16 protein, while others showed the high incidence of p16 methylation. The aim of this study was to clarify p16 gene regulation in vivo. We used real-time methylation-specific PCR (MSP) to examine density of p16 methylation, and immunohistochemistry, Western blot analysis to determine p16 protein expression. Methylation was detected in 5 CRC cell lines tested and 9 of 21 (42.9%) CRCs. Four of 5 CRC cell lines did not express p16 mRNA, but 6 of 9 CRCs did express p16 mRNA even with methylation. Real-time MSP showed that CRC tissues had a wide variety in methylation density (methylation index: 0.28-0.91) and that highly methylated CRC tissues displayed significantly lower p16 mRNA expression than those with no-methylation or low-methylation. Immunohistochemistry showed that the majority of CRCs (53 of 55: 96.4%) overexpressed the p16 protein. Low p16 expression was associated with lymph node metastasis (p=0.003) and large tumor size (p=0.048). Western blot in a subset of non-tumor and tumor samples showed a consistent overexpression of the p16 protein. These results showed that CRC tissues displayed variable methylation density, which may be characteristics of p16 gene methylation in vivo. Our data suggest that a low p16 expression due to methylation may contribute to tumor enlargement and expansion of CRC. |
AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene. | Evidence is accumulating about the role of individual AP-1 components in cell proliferation and transformation. Notably, Ras-mediated transformation is characterized by the upregulation of particular AP-1 members, such as c-Jun and Fra-1. The p14/p19ARF tumor suppressor gene is a key link between oncogenic Ras signaling and the p53 pathway. We explored the involvement of AP-1 dimers in the transcriptional regulation of the p14/p19ARF gene. We demonstrate that both the human and mouse ARF promoters are transcriptional targets of selective AP-1 dimers. The ARF promoter is regulated specifically by AP-1 heterodimers containing Fra-1. Overexpression of c-Jun approximately Fra-1 dimers in primary murine fibroblast cells led to the upregulation of the endogenous ARF protein and growth arrest. Conversely, inhibition of c-Jun or Fra-1 protein levels resulted in decreased ARF expression. In addition, we show that AP-1 dimers cooperate with oncogenic Ras in the transcriptional activation of the p14/p19ARF promoter. Thus, AP-1 heterodimers may contribute to the regulation of ARF expression upon oncogenic signaling. |
Primary malignant lymphoma of the brain: frequent abnormalities and inactivation of p14 tumor suppressor gene. | Ten primary central nervous system lymphomas (PCNSL, brain lymphomas) were examined for p14 gene exon 1beta deletion, mutation and methylation by Southern blot analysis, nucleotide analysis of polymerase chain reaction clones and Southern blot-based methylation assay. In Southern blot analysis, from the signal densities of the hybridized bands and their similarities to those of exons 2 and 3 in our previous quantitative study, we found that exon 1beta was homozygously deleted in four cases, hemizygously deleted in five cases and not deleted in one case. Thus, the same deletion patterns covered the entire p14 gene for all cases except for one case, which suggested the hemizygous deletion of exons 1beta and 2 and homozygous deletion of exon 3. In addition, although exon 1beta mutation is rare in various tumors, we detected a missense mutation (L50R) in one case with a hemizygous deletion. Methylation of the 5'CpG island of the p14 gene was not suggested for any case without homozygous deletion. Our observation of frequent p14 gene abnormalities (90%) and inactivation (40-60%) was in striking contrast to the same pathological subtype of systemic lymphoma in which p14 gene abnormalities and inactivation were infrequent, suggesting a difference in carcinogenesis between PCNSL and systemic lymphoma. |
The ARF tumor suppressor inhibits BCL6-mediated transcriptional repression. | The ARF tumor suppressor gene antagonizes generation of various tumors. ARF-mediated tumor suppression occurs in a p53-independent manner as well as in a p53-dependent manner. We here demonstrate that BCL6 is a target of the ARF tumor suppressor. Either mouse p19(ARF) or human p14(ARF) binds to BCL6 and downregulates BCL6-induced transcriptional repression. ARF-mediated downregulation of the BCL6 activity may account in part for ARF-mediated tumor suppression. |
ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. | The ARF tumor suppressor is widely regarded as an upstream activator of p53-dependent growth arrest and apoptosis. However, recent findings indicate that ARF can also regulate the cell cycle in the absence of p53. In search of p53-independent ARF targets, we isolated nucleophosmin (NPM/B23), a protein we show is required for proliferation, as a novel ARF binding protein. In response to hyperproliferative signals, ARF is upregulated, resulting in the nucleolar retention of NPM and concomitant cell cycle arrest. The Mdm2 oncogene outcompetes NPM/B23 for ARF binding, and introduction of Mdm2 reverses ARF's p53-independent properties: in vitro, NPM is released from ARF-containing protein complexes, and in vivo S phase progression ensues. ARF induction by oncogenes or replicative senescence does not alter NPM/B23 protein levels but rather prevents its nucleocytoplasmic shuttling without inhibiting rRNA processing. By actively sequestering NPM in the nucleolus, ARF utilizes an additional mechanism of tumor suppression, one that is readily antagonized by Mdm2. |
Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. | The tumor suppressor Arf (Alternative Reading Frame) protein (p14ARF in human and p19ARF in mouse) is mainly located in the nucleolus consistent with its subcellular localization, the protein has been shown to specifically interact with 5.8S rRNA and with B23/Nucleophosmin and to regulate ribosome biogenesis. Here, we show that the p14ARF protein interacts with chromatin and is recovered by chromatin immunoprecipitation (ChIP) in a fraction that contains a DNA sequence of the rRNA gene promoter. In addition, topoisomerase I (Topo I) that has been shown to interact with p14ARF coprecipitates with p14ARF containing chromatin. These data, in view of the function for Topo I in rRNA transcription, are consistent with a role for the p14ARF-Topo I complex in rRNA transcription and/or maturation. |
ability to promote SUMO conjugation is a general property of the p14 Arf tumor suppressor | Here we demonstrate a novel p53-independent interaction between the nucleolar tumor suppressors, p14 Arf and Werners helicase (WRN). Binding of p14 Arf to WRN is multivalent and resembles the binding of p14 Arf to Mdm2. Residues 2-14 and 82-101 of p14 Arf and residues in the central region and C terminus of WRN have particular importance for binding. p14 Arf promotes small ubiquitin-like modifier (SUMO) modification of WRN in a synergistic manner with the SUMO-conjugating enzyme, UBCH9. p14 Arf causes redistribution of WRN within the nucleus, and this effect is reversed by expression of a SUMO-specific protease, thus implicating the SUMO conjugation pathway in WRN re-localization. We establish that the ability to promote SUMO conjugation is a general property of the p14 Arf tumor suppressor. |
The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. | Conjugation of ubiquitin to an internal lysine is the initial step in the degradation of the majority of the substrates of the ubiquitin system. For several substrates, it has been shown that the first ubiquitin moiety is conjugated to the N-terminal residue. In all these substrates, however, the internal lysines also played a role in modulating their stability. To better understand the physiological significance of this novel mode of modification, it was important to identify proteins in which degradation is completely dependent on N-terminal ubiquitination. Also, although the experimental evidence for N-terminal ubiquitination is rather strong, nevertheless, it has remained indirect. Here we demonstrate that an important group of proteins that are targeted via N-terminal ubiquitination are the naturally occurring lysine-less proteins such as the human papillomavirus (HPV)-58 E7 oncoprotein and the cell cycle inhibitor and tumor suppressor p16(INK4a). For these proteins, the only residue that can be targeted is the N-terminal residue. Interestingly, p16(INK4a) is degraded in a cell density-dependent manner. Importantly, we provide for the first time direct evidence for N-terminal ubiquitination. Analysis of tryptic digest of the ubiquitin conjugate of HPV-58 E7 revealed a fusion peptide that is composed of the C-terminal domain of ubiquitin and the N-terminal domain of E7. With the abundance of native lysine-less proteins, among which are important viral and cell regulators, this novel mode of protein targeting has implications for both physiological and pathophysiological processes. |
"The inactivation of the tumor suppressor gene p16 plays a role in the carcinogenesis of squamous cell carcinomas of the oral cavity, the pharynx and the larynx. There is no influence on the tumor dependent prognosis." | BACKGROUND: The inactivation of the tumor suppressor gene p16 plays an important role in the development of malignant tumors. P16 loss can result from point mutations, loss of heterozygosity (LOH) or methylation of the promoter region. MATERIAL AND METHODS: A total of 67 samples of tumor tissue from squamous cell carcinomas of the oral cavity, the pharynx and the larynx were analysed for an inactivation of p16. The samples were obtained during surgery. In all cases there was a curative intention. Point mutations were detected by DNA sequencing. Methylation of the promotor region was explored with a methylation-specific PCR. A microsatellite analysis of the tumor tissue was used to search for LOH. RESULTS: The results of the molecularbiological investigations were correlated to the known clinical prognostic parameters (tumor stadium, grading, patho-histological differentiation, local and regional recurrence) after a follow-up period of approximately 3 years. Methylation of the promotor region and LOH were the main mechanisms of p16 inactivation encountered in this study. Point mutations presented as rare events. The methylation of the promotor region appeared frequently parallel with an LOH. An inactivation of p16 did not have any statistical influence on the tumor dependent survival, the lymphatic spread, the number and time delay of local and regional recurrences. Patients with an inactivated p16 gene by promotor methylation appeared to have a slightly lower tendency for local and regional recurrences. CONCLUSIONS: The inactivation of the tumor suppressor gene p16 plays a role in the carcinogenesis of squamous cell carcinomas of the oral cavity, the pharynx and the larynx. There is no influence on the tumor dependent prognosis. Tumors with an inactivated p16 gene tend to have a lower recurrence rate. |
p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. | The p16(INK4a) and p14(ARF) tumor suppressor genes (TSGs) are encoded within the CDKN2A locus on chromosome 9p21 and function as cell cycle regulatory proteins in the p53 and RB pathways. Inactivation of these genes by genetic and epigenetic changes has been described in some human cancers, but their importance in cutaneous squamous cell carcinoma (SCC) has not been established. Our detailed examination of 40 cutaneous SCC revealed loss of heterozygosity of 9p21 markers in 32.5% of cases. mutational analysis confirmed five point mutations in four of 40 SCCs. These mutations changed the amino acid sequence of p16(INK4a) in four tumors and p14(ARF) in three tumors. Promoter methylation of p16(INK4a) and p14(ARF) was detected in 13 of 36 (36%) and 16 of 38 (42%) cases, respectively. Absent protein expression was confirmed by immunohistochemistry in 13 of 16 (82%) of the tumors with biallelic inactivating events. Overall, the frequency of 9p21 alterations was 76% and for both p16(INK4a) and p14(ARF), promoter methylation is the commonest mechanism of gene inactivation. Alterations at this locus were significantly more common in tumors from immunocompetent compared with immunosuppressed individuals. These data confirm the importance of inactivation of p16(INK4a) and p14(ARF) TSGs in the pathogenesis of cutaneous SCCs. |
Alteration of p16 gene alone or in combination with alterations of other tumor suppressor genes on chromosome 9p is a prognostic indicator in gallbladder carcinoma. | PURPOSE: Biliary tract cancer is an uncommon malignancy with a poor survival rate. We evaluated p16 gene alteration as a prognostic marker for this disease. EXPERIMENTAL DESIGN: We studied p16 gene alterations by sequencing, methylation, and loss of heterozygosity of chromosome 9p in 118 biliary tract carcinomas, including 68 gallbladder cancers, 33 extrahepatic bile duct cancers, and 17 ampullary cancers. Survival was evaluated in 57 patients with gallbladder carcinomas, 27 with bile duct carcinomas, and 16 with ampullary carcinomas with and without somatic p16 alterations detected by two different methods. RESULTS: p16 gene alterations including silent mutations were present in 61.8% gallbladder cancers, 54.5% bile duct cancers, and 70.6% ampullary cancers. p16 gene nonsilent mutations, p16 methylation, and loss of chromosome 9p21-22 that targets p14, p15, and p16 genes were present in 13 of 53 (24.5%), 8 of 54 (14.8%), and 32 of 44 (72.7%) gallbladder tumors; 5 of 25 (20.0%), 5 of 31 (16.1%), and 12 of 21 (57.1%) bile duct tumors; and 3 of 13 (23.1%), 6 of 15 (40.0%), and 8 of 16 (50.0%) ampullary tumors, respectively. The mean survival of patients with gallbladder cancers without p16 alterations was 21.5 +/- 14.8 months compared with 12.1 +/- 11.4 months for patients with p16 alterations (P = 0.02). CONCLUSIONS: Alteration of p16 gene alone or in combination with alterations of other tumor suppressor genes on chromosome 9p is a prognostic indicator in gallbladder carcinoma, with more favorable survival rates associated with carcinomas lacking p16 gene alterations. |
v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase | Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix GeneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion. |
"Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation." | The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein involved in ribosome biogenesis, and promotes its polyubiquitination and degradation. Overexpression of B23 induces a cell cycle arrest in normal fibroblasts, whereas in cells lacking p53 it promotes S phase entry. Conversely, knocking down B23 inhibits the processing of preribosomal RNA and induces cell death. Further, oncogenic Ras induces B23 only in ARF null cells, but not in cells that retain wild-type ARF. Together, our results reveal a molecular mechanism of ARF in regulating ribosome biogenesis and cell proliferation via inhibiting B23, and suggest a nucleolar role of ARF in surveillance of oncogenic insults. |
Tumor suppressor p16INK4a determines sensitivity of human cells to transformation | The Ink4a/Arf locus encodes two distinct proteins, both of which may contribute to senescence and tumor suppression. We find that human diploid fibroblasts (HDFs) that are specifically deficient for p16INK4a achieve anchorage independence when transduced with retroviruses encoding telomerase (hTERT) and either Ras or Myc. Significantly, Ras and Myc together enable the cells to form tumors in nude mice but at a frequency that suggests additional genetic changes. All five tumors analyzed expressed high levels of Ras and retained functional p53, although two showed downregulation of Arf. Cytogenetic analyses identified clonal chromosomal alterations that may have contributed to tumorigenesis, but the tumor cells were essentially diploid. |
"Tumor suppressor genes p15(INK4b), p14(ARF) and p16(INK4a) are located at the 9p21 locus in 26 cryopreserved neurofibromatosis type 1-related malignant peripheral nerve sheath tumors." | PURPOSE: Malignant peripheral nerve sheath tumor (MPNST) can arise sporadically or in association with neurofibromatosis type 1. Deletions at the 9p21 locus have been reported in these tumors. To additionally characterize the status of this chromosomal region, in this study we performed a comprehensive, mostly PCR-based molecular analysis of the three tumor suppressor genes p15(INK4b), p14(ARF) and p16(INK4a) located at the 9p21 locus in 26 cryopreserved MPNSTs. EXPERIMENTAL DESIGN: Fourteen neurofibromatosis type 1-related and 12 sporadic cases were investigated for homozygous deletion coupled with fluorescent in situ hybridization, promoter methylation, and mutational analysis, as well as m-RNA expression. RESULTS: The results showed that an inactivation of one or more genes occurred in 77% of MPNSTs and was mainly achieved through homozygous deletion (46%), which, in turn, encompassed all of the three tandemly linked genes in 83% of the deleted cases. Promoter methylation was at a less extent involved in gene silencing (18%), and no mutations were found. Loss of function at DNA level strongly correlated with loss of mRNA expression accounting for 80% of the cases. Because of the close relationship between p14(ARF) and TP53 and between p15(INK4b)/p16(INK4a) and Rb, these results support a model of a coinactivation of TP53 and Rb pathways in 75% of MPNSTs, with functional consequences on cell growth control and apoptosis. CONCLUSIONS: The inactivation of the 9p21 locus is a frequent and peculiar hallmark of MPNST genetic profile leading also to an impaired apoptosis that could be taken into account in treatment planning of these tumors. |
"Results identify the point during neoplastic progression in epithelia when the tumor suppressor p16 and laminin 5 are expressed and suggest that normal epithelia may use the same mechanism to generate non-dividing, motile cells for wound repair." | The high frequency of mutation, deletion, and promoter silencing of the gene encoding p16(INK4A) (p16) in premalignant dysplasias and squamous cell carcinomas (SCC) of epidermis and oral epithelium classifies p16 as a tumor suppressor. However, the point during neoplastic progression at which this protein is expressed and presumably impedes formation of an SCC is unknown. Induction of p16 has been found to be responsible for the senescence arrest of normal human keratinocytes in culture, suggesting the possibility that excessive or spatially abnormal cell growth in vivo triggers p16 expression. We examined 73 skin and oral mucosal biopsy specimens immunohistochemically to test this hypothesis. p16 was not detectable in benign hyperplastic lesions, but instead was expressed heterogeneously in some dysplastic and carcinoma in situ lesions and consistently at areas of microinvasion and at superficial margins of advanced SCCs. p16-positive cells in these regions coexpressed the gamma2 chain of laminin 5, identified previously as a marker of invasion in some carcinomas. Normal keratinocytes undergoing senescence arrest in culture proved to coordinately express p16 and gamma2 and this was frequently associated with increased directional motility. Keratinocytes at the edges of wounds made in confluent early passage cultures also coexpressed p16 and gamma2, accompanying migration to fill the wound. These results have identified the point during neoplastic progression in stratified squamous epithelial at which the tumor suppressor p16 is expressed and suggest that normal epithelia may use the same mechanism to generate non-dividing, motile cells for wound repair. |
observations suggest that p14ARF tumor suppressor activity may be linked to its oligomerization status and sensitive to the redox status of the cell | The tumor suppressor ARF plays an important role as an inhibitor of the Mdm2-mediated degradation of p53. Here we demonstrate that human ARF (p14ARF) can form homo-oligomers. The stability of the oligomers is favored by oxidizing agents in a reversible fashion and involves all three cysteine residues in p14ARF. Furthermore, the effect of p14ARF in clonogenic assays is moderately but reproducibly increased by the mutation of its cysteine residues. We also observed that altering the amino terminus of p14ARF resulted in the appearance of remarkably stable oligomers. This indicates that the amino terminus of p14ARF interferes with the ability of the protein to form multimeric complexes. These observations suggest that p14ARF activity may be linked to its oligomerization status and sensitive to the redox status of the cell. |
ATM and the ARF-p53 tumor suppressor pathway may cooperate in the pathogenesis of diffuse large B-cell lymphoma | The ATM serine-threonine kinase plays a central role in the cellular response to DNA damage. Germ-line mutations in the ATM gene cause ataxia-telangiectasia (A-T), a multisystem disorder associated with predisposition to lymphoma and acute leukemia. Moreover, somatic ATM mutations have been identified in T-cell prolymphocytic leukemia, mantle cell lymphoma, and B-cell chronic lymphocytic leukemia. In this study, the entire ATM coding sequence was examined in genomic DNA from 120 lymphoid neoplasms. Novel mutations and mutations implicated in cancer and/or A-T were found in 9 of 45 diffuse large B-cell lymphomas (DLBCLs), 2 of 24 follicular lymphomas, and 1 of 27 adult acute lymphoblastic leukemias, whereas no such mutations were detected among 24 peripheral T-cell lymphomas. The mutational spectrum consisted of 2 nonsense mutations, 1 mutation affecting RNA splicing, and 10 missense variants. Most of these mutations were associated with loss or mutation of the paired ATM allele, consistent with biallelic inactivation of ATM. Of the 9 DLBCLs with ATM mutations, 7 also carried TP53 mutations and/or deletions of the INK4a/ARF locus (P =.003). The ATM 735C>T substitution previously considered a rare normal variant was found to be 5.6 times more frequent in individuals with DLBCL than in random individuals (P =.026), suggesting that it may predispose to B-cell lymphoma. Our data suggest that ATM mutations contribute to the development of DLBCL, and that ATM and the ARF-p53 tumor suppressor pathway may cooperate in the pathogenesis of this malignancy. |
"The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia." | The t(8;21) is one of the most frequent chromosomal translocations associated with acute leukemia. This translocation creates a fusion protein consisting of the acute myeloid leukemia-1 transcription factor and the eight-twenty-one corepressor (AML1 ETO), which represses transcription through AML1 (RUNX1) DNA binding sites and immortalizes hematopoietic progenitor cells. We have identified the p14(ARF) tumor suppressor, a mediator of the p53 oncogene checkpoint, as a direct transcriptional target of AML1 ETO. AML1 ETO repressed the p14(ARF) promoter and reduced endogenous levels of p14(ARF) expression in multiple cell types. In contrast, AML1 stimulated p14(ARF) expression and induced phenotypes consistent with cellular senescence. Chromatin immunoprecipitation assays demonstrated that AML1 ETO was specifically bound to the p14(ARF) promoter. In acute myeloid leukemia samples containing the t(8;21), levels of p14(ARF) mRNA were markedly lower when compared with other acute myeloid leukemias lacking this translocation. Repression of p14(ARF) may explain why p53 is not mutated in t(8;21)-containing leukemias and suggests that p14(ARF) is an important tumor suppressor in a large number of human leukemias. |
Inactivation of tumor suppressor genes p15(INK4b) and p16(INK4a) in primary cutaneous B cell lymphoma. | Primary cutaneous B cell lymphomas represent a distinct group of lymphoproliferative disorders that can be distinguished from systemic lymphoma by their good response to local treatment and favorable prognosis. In systemic B cell lymphoma, inactivation of p15(INK4b) and p16(INK4a) is frequently observed and may be associated with a poor prognosis. There have been no comprehensive studies in primary cutaneous B cell lymphomas, however. Mechanisms of p15/p16 inactivation include loss of heterozygosity, homozygous deletion, promotor region hypermethylation, and point mutation. We analyzed DNA from 36 cases of primary cutaneous B cell lymphomas, four systemic B cell lymphomas, and six benign B cell lymphoproliferative infiltrates for abnormalities of p15 and p16 using microsatellite markers for 9p21, methylation specific polymerase chain reaction, and polymerase chain reaction/single stranded conformational polymorphism analysis with exon specific primers. expression of both p15 and p16 protein was assessed by immunohistochemistry. Loss of heterozygosity at 9p21 was identified in 2 out of 36 primary cutaneous B cell lymphomas. Hypermethylation of p15 and p16 promotor regions was identified in 8 of 35 (23%) and 15 of 35 (43%) cases, respectively. In two cases p16 hypermethylation was identified in recurrent disease but not in the initial tumor. No point mutations were identified. In seven patients, however, a polymorphism was observed in exon 3 of the p16 gene. In primary cutaneous B cell lymphomas with allelic loss or promotor hypermethylation of either p15 or p16, loss of expression in tumor cells was identified in 5 of 8 and 9 of 10 cases, respectively. Our findings suggest that p15(INK4b) and p16(INK4a) biallelic gene abnormalities are common in primary cutaneous B cell lymphomas, most frequently as a result of promotor hypermethylation. The presence of abnormalities in recurrent disease in some cases suggests that inactivation of p15 and p16 may be involved in disease progression. |
Tumor suppressor gene p16 and Rb expression in gastric cardia precancerous lesions from subjects at a high incidence area in northern China. | AIM: To further understand the molecular basis for gastric cardia carcinogenesis and to provide etiological clues. METHODS: Endoscopic mucosa biopsy and histopathological examinations were made on 37 subjects from a high incidence area for both esophageal and gastric cardia carcinomas in northern China. All the biopsy samples were fixed in 850 ml. (-1)L alcohol and embedded in paraffin. Each block contained one piece of tissue and was serially section at 5 microm. Immunohistochemistry (ABC) was carried out on these gastric cardia samples to determine the alterations of p16 and Rb. RESULTS: Based on the histopathlogical examination there were 11 cases of chronic superficial gastritis, 12 cases of chronic atrophic gastritis and 14 cases of dysplasia. The immunostaining demonstrated different levels of unclear immunostaining of p16 and Rb in normal gastric cardia tissue and the tissues with different severity of lesions. With the lesions progressing, the positive immunostaining rates for p16 protein had a decreasing tendency. In contrast, the positive immunostaining rate for Rb protein had an increasing tendency. There was a significant negative relationship between the two parameters. Changes of p16 was CSG 11(100%), CAG 7(58%), DYS 4(29%) and changes of Rb was CSG 2(18%), CAG 8(67%) and DYS 12(86%), (P<0.05). CONCLUSION: The alterations of p16 and Rb protein may play a role in the early stages of gastric cardia carcinogenesis. |
"Transcriptional regulation of the human tumor suppressor p14(ARF) by E2F1, E2F2, E2F3, and Sp1-like factors." | The human ARF/INK4a locus encodes two cell cycle inhibitors, p16(INK4a) and p14(ARF), by using separate promoters. A variety of mitogenic stimuli upregulate ARF but a direct modulation at the transcriptional level has been reported only for E2F-1. We show here that the ARF promoter is strongly responsive also to E2F2 and E2F3, thus providing a strong support to their suggested role in the induction of apoptosis. Through the usage of both deletion mutants and/or site-directed mutants, we surprisingly found that none of the four putative E2F consensus sites is strictly necessary for the upregulation of ARF expression, as a minimal deletion mutant, lacking all the putative E2F binding sites, is still transactivated by E2F. Moreover, our data suggest that the ARF promoter is regulated by E2F through both direct binding to the promoter sequences and indirectly, probably by being tethered to the ARF promoter by Sp1-like factors.CI - (C)2002 Elsevier Science (USA). |
Human tumor suppressor ARF impedes S-phase progression independent of p53. | Using alternative reading frames, the human ARF-INK4a locus encodes two unrelated proteins that both function in tumor suppression. p16(INK4a) maintains the retinoblastoma protein in its growth-suppressive state through inhibition of cyclin D-dependent kinase activity, whereas ARF binds with MDM2 and stabilizes p53. The majority of the activity of ARF to date is ascribed to its ability to activate p53, resulting in a G(1) cell cycle arrest or apoptosis. We show here that ARF colocalizes with DNA replication protein A (RPA32) and that overexpression of ARF reduces the rate of DNA synthesis resulting in accumulation of an S-phase cell population. Impediment of DNA synthesis by ARF can occur and becomes more evident in the absence of p53. Hence, the biological consequence of ARF induction varies dependent on cellular p53 status, inducing predominantly a G(1) arrest or apoptosis in p53-positive cells or causing S-phase retardation when p53 function is comprised. |
p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways. | p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity. |
Evaluation of alterations in the tumor suppressor genes INK4A and INK4B in human bladder tumors. | The mechanisms controlling neural stem cell proliferation are poorly understood. Here we demonstrate that the PTEN tumor suppressor plays an important role in regulating neural stem/progenitor cells in vivo and in vitro. Mice lacking PTEN exhibited enlarged, histoarchitecturally abnormal brains, which resulted from increased cell proliferation, decreased cell death, and enlarged cell size. Neurosphere cultures revealed a greater proliferation capacity for tripotent Pten-/- central nervous system stem/progenitor cells, which can be attributed, at least in part, to a shortened cell cycle. However, cell fate commitments of the progenitors were largely undisturbed. Our results suggest that PTEN negatively regulates neural stem cell proliferation. |
The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha ) and inhibits HIF-1-mediated transcription. | Oncogenic alterations can influence tumor cell survival partly by affecting the activity of the hypoxia-inducible factor-1 (HIF-1) transcription factor. The alpha subunit of HIF-1 was found to be frequently overexpressed in advanced tumors, which was proposed to help the adaptation of tumor cells to hypoxia. Here we show that an important tumor suppressor protein, p14ARF (alternative reading frame product of the INK4A locus) can directly inhibit the transcriptional activity of HIF-1 by sequestering its alpha subunit into the nucleolus. The interaction requires neither p53 nor HDM2. This is one of the first reports that describe the interaction of p14ARF with a protein besides HDM2, which may define a p53-independent tumor suppressor activity for p14ARF. |
"The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein." | The INK4a gene, one of the most often disrupted loci in human cancer, encodes two unrelated proteins, p16(INK4a) and p14(ARF) (ARF) both capable of inducing cell cycle arrest. Although it has been clearly demonstrated that ARF inhibits cell cycle via p53 stabilization, very little is known about the involvement of ARF in other cell cycle regulatory pathways, as well as on the mechanisms responsible for activating ARF following oncoproliferative stimuli. In search of factors that might associate with ARF to control its activity or its specificity, we performed a yeast two-hybrid screen. We report here that the human homologue of spinophilin/neurabin II, a regulatory subunit of protein phosphatase 1 catalytic subunit specifically interacts with ARF, both in yeast and in mammalian cells. We also show that ectopic expression of spinophilin/neurabin II inhibits the formation of G418-resistant colonies when transfected into human and mouse cell lines, regardless of p53 and ARF status. Moreover, spinophilin/ARF coexpression in Saos-2 cells, where ARF ectopic expression is ineffective, somehow results in a synergic effect. These data demonstrate a role for spinophilin in cell growth and suggest that ARF and spinophilin could act in partially overlapping pathways. |
Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data. | Within the tumor suppressor protein INK4 (inhibitor of cyclin-dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H-bonds). For this purpose, the solution structure of pl6INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure-based iterative NOE assignments. The nonhelical regions showed major improvement with root-mean-square deviation (RMSD) improved from 1.23 to 0.68 A for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A-CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member. |
Tumor suppressor INK4: comparisons of conformational properties between p16(INK4A) and p18(INK4C). |
The INK4 (inhibitor of cyclin-dependent kinase 4) family consists of four tumor-suppressor proteins: p15(INK4B), p16(INK4A), p18(INK4C), and p19(INK4D). While their sequences and structures are highly homologous, they show appreciable differences in conformational flexibility, stability, and aggregation tendency. Here, p16 and p18 were first compared directly by NMR for line broadening and disappearance, then investigated by three different approaches in search of the causes of these differences. From denaturation experiments it was found that both proteins are marginally stable with low denaturation stability (1.94 and 2.98 kcal/mol, respectively). Heteronuclear (1)H-(15)N nuclear Overhauser enhancement measurements revealed very limited conformational flexibility on the pico- to nanosecond time-scale for both p16 and p18. H/(2)H exchange of amide protons monitored by NMR on three proteins (p16, p18 as well as p15), however, revealed markedly different rates in the order p18 |
Rearrangement and allelic imbalance on chromosome 5 leads to homozygous deletions in the CDKN2A/2B tumor suppressor gene region in rat endometrial cancer. | The inbred BDII rat is a valuable experimental model for the genetic analysis of hormone-dependent endometrial adenocarcinoma (EAC). One common aberration detected previously by comparative genomic hybridization in rat EAC is loss affecting mostly the middle part of rat chromosome 5 (RNO5). First, we applied an RNO5-specific painting probe and four region-specific gene probes onto tumor cell metaphases from 21 EACs, and found that rearrangements involving RNO5 were common. The copy numbers of loci situated on RNO5 were found to be reduced, particularly for the CDKN2A/2B locus. Second, polymerase chain reaction analysis was performed with 22 genes and markers and homozygous deletions of the CDKN2A exon 1beta and CDKN2B genes were detected in 13 EACs (62%) and of CDKN2A exon 1alpha in 12 EACs (57%) Third, the occurrence of allelic imbalance in RNO5 was analyzed using 39 microsatellite markers covering the entire chromosome and frequent loss of heterozygosity was detected. Even more intriguing was the repeated finding of allele switching in a narrow region of 7 Mb across the CDKN2A/2B locus. We conclude that genetic events affecting the middle part of RNO5 (including bands 5q31 approximately q33 and the CDKN2A locus) contribute to the development of EAC in rat, with the CDKN2A locus having a primary role. |
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. | The p19(Arf) tumor suppressor, a nucleolar protein, binds to Mdm2 to induce p53-dependent cell cycle arrest. Arf also prevents the proliferation of cells lacking Mdm2 and p53, albeit less efficiently. We show that p19(Arf) inhibits production of ribosomal RNA, retarding processing of 47/45S and 32S precursors. These effects correlate with but do not strictly depend upon inhibition of rRNA biosynthesis or cell cycle arrest, are not mimicked by p53, and require neither p53 nor Mdm2. Arf mutants lacking conserved amino acid residues 2-14 do not block rRNA synthesis and processing or inhibit cell proliferation. Evolution may have linked a primordial nucleolar Arf function to Mdm2 and p53, creating a more efficient checkpoint-signaling pathway for coordinating ribosomal biogenesis and cell cycle progression. |
Specific allelic loss of p16 (INK4A) tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis. | Oxidative tissue damage has been shown to be associated with carcinogenesis. In human cancers p16(INK4A) is one of the most frequently mutated tumor suppressor genes. The present study used the ferric nitrilotriacetate (Fe-NTA)-induced rat renal carcinogenesis model to determine whether oxidative damage can cause specific allelic loss of p16 (INK4A). By the use of fluorescent in situ hybridization in combination with imprint cytology at single-cell resolution, we found that the number of renal tubular cells with aneuploidy (1 or 3 signals) at the p16(INK4A) locus was significantly and specifically increased (1 week, 37.2 +/- 2.3%; 3 weeks, 37.8 +/- 1.3% vs control, 22.5 +/- 1.9%; mean +/- SE, N = 8; P < 0.001 and P < 0.0001, respectively) after repeated intraperitoneal administration of 5 to10 mg of iron/kg in the form of Fe-NTA for 3 weeks. No increase in aneuploidy was observed at the loci of either the p53 or vhl tumor suppressor gene. Furthermore, the increase in the cells with 3 signals was followed by a continuous increase in those with 1 signal. Therefore, the p16 (INK4A) locus is specifically vulnerable to oxidative damage, leading to its allelic loss within weeks, presumably due to a deficiency in the replication of both the alleles. |
An AC-repeat adjacent to mouse Cdkn2B allows the detection of specific allelic losses in the p15INK4b and p16INK4a tumor suppressor genes. | The cyclin-dependent kinase inhibitors p15INK4b and p16INK4a are involved in the development of a wide range of human and murine tumors. These tumor suppressor genes are inactivated by deletions frequently associated to point mutations in the coding regions or hypermethylation of their promoters. In this work, we describe a simple-sequence length polymorphism located in mouse Chromosome (Chr) 4, between the Cdkn2B (p15INK4b) and Cdkn2A (p16INK4a) genes, only 700 bp downstream of the Cdkn2B locus. This DNA region was analyzed in different inbred strains showing a variable AC-repetitive DNA sequence. We used this microsatellite to detect loss of heterozygosity of the Cdkn2A and Cdkn2B loci in gamma-irradiation-induced thymic lymphomas of C57BL/6J x RF/J F1 hybrids. Using this specific marker, we were able to locate additional allelic losses not detected by other microsatellites. Since the allelic losses can be detected by a simple PCR amplification, this AC-repetitive sequence is specially useful as a genetic marker for these Cdkn2 genes and specifically for the p15INK4b cell cycle inhibitor. |
Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. | Four INK4 proteins can prevent cell proliferation by specifically inhibiting cyclin D-dependent kinases. Both p18INK4c and p19INK4d were widely expressed during mouse embryogenesis, but p16INK4a and p15INK4b were not readily detected prenatally. Although p15INK4b, p18INK4c and p19INK4d were demonstrated in many tissues by 4 weeks after birth, p16INK4a protein expression was restricted to the lung and spleen of older mice, with increased, more widespread mRNA expression during aging. Transcripts encoding the INK4a alternative reading frame product p19ARF were not detected before birth but were ubiquitous postnatally. expression of p16INK4a and p15INK4b was induced when mouse embryos were disrupted and cultured as mouse embryo 'fibroblasts' (MEFs). The levels of p16INK4a and p18INK4c, but not p15INK4b or p19INK4d, further increased as MEFs approached senescence. Following crisis and establishment, three of four independently-derived cell lines became polyploid and expressed higher levels of functional p16INK4a. In contrast, one MEF line that sustained bi-allelic deletions of INK4a initially remained diploid. Therefore, loss of p16INK4a and other events predisposing to polyploidy may represent alternative processes contributing to cell immortalization. Whereas p18INK4c and p19INK4d may regulate pre- and postnatal development, p16INK4a more likely plays a checkpoint function during cell senescence that underscores its selective role as a tumor suppressor. |
Sequence variation and chromosomal mapping of the murine Cdkn2a tumor suppressor gene. | The predisposing genetic defect in multiple endocrine neoplasia type 1 has been assigned to chromosomal region 11q13. Our previous attempts to identify the MEN1 gene have resulted in the isolation of the phospholipase C beta 3 gene from the actual region. PLCB3 plays an important role in signal transduction and, moreover, shows loss of expression in some endocrine tumors, in accordance with a putative tumor suppressor gene function, and thus appears to be an excellent candidate for MEN1. We have therefore undertaken screening for constitutional mutations in individuals from MEN1 families. Several sequence alterations have been discovered, none of them however fulfilling the criteria for a disease-related mutation. We can now exclude PLCB3 from candidacy as the MEN1 gene. |
Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. | The INK4a (MTS1, CDKN2) gene encodes an inhibitor (p16INK4a) of the cyclin D-dependent kinases CDK4 and CDK6 that blocks them from phosphorylating the retinoblastoma protein (pRB) and prevents exit from the G1 phase of the cell cycle. Deletions and mutations involving INK4a occur frequently in cancers, implying that p16INK4a, like pRB, suppresses tumor formation. An unrelated protein (p19ARF) arises in major part from an alternative reading frame of the mouse INK4a gene, and its ectopic expression in the nucleus of rodent fibroblasts induces G1 and G2 phase arrest. Economical reutilization of coding sequences in this manner is practically without precedent in mammalian genomes, and the unitary inheritance of p16INK4a and p19ARF may underlie their dual requirement in cell cycle control. |
The tumor suppressor ARF regulates innate immune responses in mice. | The innate immune system is the first line of defense against invading organisms, and TLRs are the main sensors of microbial components, initiating signaling pathways that induce the production of proinflammatory cytokines and type I IFNs. An antiviral action for the tumor suppressor alternative reading frame (ARF) has been reported; however, the precise role of ARF in innate immunity is unknown. In this study, we show that ARF plays an important role in regulation of inflammatory responses. In peritoneal macrophages and bone marrow-derived macrophages from ARF-deficient animals, the induction of proinflammatory cytokines and chemokines by TLR ligands was severely impaired. The altered responses of ARF(-/-) cells to TLR ligands result from aberrant activation of intracellular signaling molecules including MAPKs, IkappaBalpha degradation, and NF-kappaB activation. Additionally, animals lacking ARF were resistant to LPS-induced endotoxic shock. This impaired activation of inflammation in ARF(-/-) mice was not restricted to TLRs, as it was also shown in response to non-TLR signaling pathways. Thus, ARF(-/-) mice were also unable to trigger a proper inflammatory response in experimental peritonitis or in 12-O-tetradecanoylphorbol-13-acetate-induced edema. Overexpression of ARF, but not its downstream target p53, rescued the ARF-deficient phenotype, increasing TLR4 levels and restoring inflammatory reaction. An increase in the E2F1 protein levels observed in ARF(-/-) macrophages at basal condition and after LPS stimulation may be involved in the impaired response in this system, as E2F1 has been described as an inflammatory suppressor. These results indicate that tumor suppressor ARF is a new regulator of inflammatory cell signaling. |
Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. | The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to Ras(V12) in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from Ras(V12) in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation. |
Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells. | The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19(Arf) is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf) in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate gamma-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells. |
"Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies." | LMO2 is a target of chromosomal translocations in T-cell tumors and was activated by retroviral vector insertions in T-cell tumors from X-SCID patients in gene therapy trials. To better understand the cooperating genetic events in LMO2-associated T-cell acute lymphoblastic leukemia (T-ALL), we investigated the roles of Arf tumor suppressor loss and Notch activation in murine models of transplantation. Lmo2 overexpression enhanced the expansion of primitive DN2 thymocytes, eventually facilitating the stochastic induction of clonal CD4(+)/CD8(+) malignancies. Inactivation of the Arf tumor suppressor further increased the self-renewal capacity of the primitive, preleukemic thymocyte pool and accelerated the development of aggressive, Lmo2-induced T-cell lympholeukemias. Notch mutations were frequently detected in these Lmo2-induced tumors. The Arf promoter was not directly engaged by Lmo2 or mutant Notch, and use of a mouse model in which activation of a mutant Notch allele depends on previous engagement of the Arf promoter revealed that Notch activation could occur as a subsequent event in T-cell tumorigenesis. Therefore, Lmo2 cooperates with Arf loss to enhance self-renewal in primitive thymocytes. Notch mutation and Arf inactivation appear to independently cooperate in no requisite order with Lmo2 overexpression in inducing T-ALL, and all 3 events remained insufficient to guarantee immediate tumor development. |
ARF tumor suppressor regulates bone remodeling and osteosarcoma development in mice | The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS) development in mice. Arf(-/-) mice displayed increased osteoblast (OB) and osteoclast (OC) activity with a significant net increase in trabecular bone volume. The long bones of Arf(-/-) mice had increased expression of OB genes while Arf(-/-) OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf(-/-) mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf(-/-) tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf(+/-) mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf(-/-) mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS. |
DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance. | Aberrant DNA methylation is considered an important epigenetic mechanism for gene inactivation. Monoclonal gammopathy of undetermined significance (MGUS) is believed to be a precursor of multiple myeloma (MM). We have analyzed methylation status of p15 INK4B , p16 INK4A , ARF, SOCS-1, p27 KIP1 , RASSF1A, and TP73 genes in bone marrow DNA samples from 21 MGUS and 44 MM patients, in order to determine the role of aberrant promoter methylation as one of the steps involved in the progression of MGUS to MM. Methylation specific polymerase chain reaction assay followed by DNA sequencing of the resulting product was performed. SOCS-1 gene methylation was significantly more frequent in MM (52%) than in MGUS (14%; p=0,006). Methylation frequencies of TP73, ARF, p15 INK4B , p16 INK4A , and RASSF1A were comparable in MGUS: 33%, 29%, 29%, 5%, and 0%, to that observed in MM: 45%, 29%, 32%, 7%, and 2%. All patients lacked methylation at p27 KIP1 gene. In both entities, a concurrent methylation of p15 INK4B and TP73 was observed. The mean methylation index of MGUS was lower (0.16) than that of MM (0.24; p<0.05). Correlations with clinicopathologic characteristics showed a higher mean age in MGUS patients with SOCS-1 methylated (p<0.001); meanwhile in MM, methylation of p15 INK4B was more frequent in males (p=0.009) and IgG isotype (p=0.038). Our findings suggest methylation of TP73, ARF, p15 INK4B , and p16 INK4A as early events in the pathogenesis and development of plasma cell disorders; meanwhile, SOCS-1 methylation would be an important step in the clonal evolution from MGUS to MM. |
Expression of the Arf tumor suppressor gene is controlled by Tgfbeta2 during development. | The Arf tumor suppressor (also known as Cdkn2a) acts as an oncogene sensor induced by ;abnormal' mitogenic signals in incipient cancer cells. It also plays a crucial role in embryonic development: newborn mice lacking Arf are blind due to a pathological process resembling severe persistent hyperplastic primary vitreous (PHPV), a human eye disease. The cell-intrinsic mechanism implied in the oncogene sensor model seems unlikely to explain Arf regulation during embryo development. Instead, transforming growth factor beta2 (Tgfbeta2) might control Arf expression, as we show that mice lacking Tgfbeta2 have primary vitreous hyperplasia similar to Arf(-/-) mice. Consistent with a potential linear pathway, Tgfbeta2 induces Arf transcription and p19(Arf) expression in cultured mouse embryo fibroblasts (MEFs); and Tgfbeta2-dependent cell cycle arrest in MEFs is maintained in an Arf-dependent manner. Using a new model in which Arf expression can be tracked by beta-galactosidase activity in Arf(lacZ/+) mice, we show that Tgfbeta2 is required for Arf transcription in the developing vitreous as well as in the cornea and the umbilical arteries, two previously unrecognized sites of Arf expression. Chemical and genetic strategies show that Arf promoter induction depends on Tgfbeta receptor activation of Smad proteins; the induction correlates with Smad2 phosphorylation in MEFs and Arf-expressing cells in vivo. Chromatin immunoprecipitation shows that Smads bind to genomic DNA proximal to Arf exon 1beta. In summary, Tgfbeta2 and p19(Arf) act in a linear pathway during embryonic development. We present the first evidence that p19(Arf) expression can be coupled to extracellular cues in normal cells and suggest a new mechanism for Arf control in tumor cells. |
Increased senescence as mediated by the p16(INK4A) tumor suppressor has only a minor function as an intrinsic regulator of steady-state HSC ageing in vivo. | Somatic stem cells are ultimately responsible for mediating appropriate organ homeostasis and have therefore been proposed to represent a cellular origin of the ageing process-a state often characterized by inappropriate homeostasis. Specifically, it has been suggested that ageing stem cells might succumb to replicative senescence by a mechanism involving the cyclin-dependent kinase inhibitor p16(INK4A). Here, we tested multiple functional and molecular parameters indicative of p16(INK4A) activity in primary aged murine hematopoietic stem cells (HSCs). We found no evidence that replicative senescence accompanies stem cell ageing in vivo, and in line with p16(INK4A) being a critical determinant of such processes, most aged HSCs (>99%) failed to express p16(INK4A) at the mRNA level. Moreover, whereas loss of epigenetically guided repression of the INK4A/ARF locus accompanied replicative senescent murine embryonic fibroblasts, such repression was maintained in aged stem cells. Taken together, these studies indicate that increased senescence as mediated by the p16(INK4A) tumor suppressor has only a minor function as an intrinsic regulator of steady-state HSC ageing in vivo. |
Transient expression of the Arf tumor suppressor during male germ cell and eye development in Arf-Cre reporter mice. | The Arf tumor suppressor is expressed transiently during mouse male germ cell and eye development. Its inactivation compromises spermatogenesis as mice age and leads to aberrant postnatal proliferation of cells in the vitreous of the eye, resulting in blindness. In the testis, expression of p19(Arf) is limited to spermatogonia but is extinguished completely in spermatocytes, suggesting that Arf plays a physiologic role in setting the balance between mitotic and meiotic germ cell division. A knock-in allele encoding Cre recombinase regulated by the mouse cellular Arf promoter was used to trace Arf gene induction in vivo. Interbreeding to a reporter strain that expresses Cre-dependent YFP provided proof-of-principle that the Arf-Cre allele was appropriately expressed in the male germ cell lineage. However, Cre expression resulted in male sterility, limiting germ line transmission of the knock-in allele to females. Arf-null mice fail to resorb the hyaloid vasculature within the ocular vitreous where pericyte-like cells that express the PDGF-beta receptor (Pdgfrbeta) proliferate aberrantly and destroy the retina and lens. Interbreeding of Arf-Cre females to males containing "floxed" (FL) Arf alleles yielded Arf(Cre/FL) progeny that exhibited variably penetrant defects in visual acuity ranging to total blindness. Crossing the Arf(Cre/FL) alleles onto a Pdgfrbeta(FL/FL) background normalized all histopathology and restored vision fully. |
Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. | Glioblastoma multiforme (GBM) is a highly lethal brain tumor for which little treatment is available. The epidermal growth factor receptor (EGFR) signaling pathway is thought to play a crucial role in GBM pathogenesis, initiating the early stages of tumor development, sustaining tumor growth, promoting infiltration, and mediating resistance to therapy. The importance of this pathway is highlighted in the fact that EGFR is mutationally activated in over 50% of GBM tumors. Consistent with this, we show here that concomitant activation of wild-type and/or mutant (vIII) EGFR and ablation of Ink4A/Arf and PTEN tumor suppressor gene function in the adult mouse central nervous system generates a fully penetrant, rapid-onset high-grade malignant glioma phenotype with prominent pathological and molecular resemblance to GBM in humans. Studies of the activation of signaling events in these GBM tumor cells revealed notable differences between wild-type and vIII EGFR-expressing cells. We show that wild-type EGF receptor signals through its canonical pathways, whereas tumors arising from expression of mutant EGFR(vIII) do not use these same pathways. Our findings provide critical insights into the role of mutant EGFR signaling function in GBM tumor biology and set the stage for testing of targeted therapeutic agents in the preclinical models described herein. |
Inactivation of the p19(ARF) tumor suppressor affects intestinal epithelial cell proliferation and integrity. | p19(ARF) is a tumor suppressor that is frequently deleted in human cancer. It lies at chromosome 9p21 and shares exons 2 and 3 with p16(ink4a), which is also inactivated by these cancer-associated deletions. The "canonical pathway" by which p19(ARF) is thought to suppress tumorigenesis through activation of the p53 tumor suppressor. In response to hyperproliferative signals, such as expression of oncogenes, p19(ARF) is induced and binds to the MDM2 ubiquitin ligase, sequestering it in the nucleolus to allow the accumulation of p53. However, p19(ARF) also has MDM2 and p53 independent functions. In human colon cancer, p19(ARF) is only rarely deleted, but it is more frequently silenced by DNA promoter methylation. Here we show that inactivation of p19(ARF) in mice increases the number of cycling cells in the crypts of the colonic epithelium. Moreover, inactivation of p19(ARF) exacerbated the ulceration of the colonic epithelium caused by dextran sodium sulfate (DSS). These effects were similar to those observed in mice lacking myeloid translocation gene-related-1 (Mtgr1), and mice lacking both of these genes showed an even greater sensitivity to DSS. Surprisingly, inactivation of p19(ARF) restored the loss of the secretory lineage in mice deficient in Mtgr1, suggesting an additional role for p19(ARF) in the small intestinal epithelium. |
A novel role for the Arf tumor suppressor protein in regulating phenotypes associated with tumor progression and metastasis in hepatocellular carcinoma cells. | The INK4A/ARF tumor suppressor locus is frequently inactivated in hepatocellular carcinoma (HCC), yet the consequences of this remain unknown. We recently described a HCC mouse model in which loss of the Ink4a/Arf locus accelerates the development of metastasis and enhances tumor cell migration and invasion in cell culture assays. We show here that knockdown of p19Arf in an HCC cell line increases invasion in cell culture assays. Furthermore, reintroduction of p19(Arf) into HCC cell lines lacking Ink4a/Arf inhibits tumor cell invasion, without affecting cell proliferation, or cell transformation as measured by soft agar colony formation. Inhibition of cell invasion by p19(Arf) was dependent on its C-terminal binding protein (CtBP) interaction domain but independent of Mdm2 binding and nucleolar localization. Indeed, RNA interference-mediated knockdown of CtBP1 or CtBP2 decreased cell invasion, and ectopic expression of CtBP2 enhanced tumor cell migration and invasion. Thus, our data indicate a novel role for the Arf tumor suppressor protein in regulating phenotypes associated with tumor progression and metastasis in HCC cells. |
A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function. | The nucleolus is the center of ribosome synthesis, with the nucleophosmin (NPM) and p19(ARF) proteins antagonizing one another to either promote or inhibit growth. However, basal NPM and ARF proteins form nucleolar complexes whose functions remain unknown. Nucleoli from Arf(-/)(-) cells displayed increased nucleolar area, suggesting that basal ARF might regulate key nucleolar functions. Concordantly, ribosome biogenesis and protein synthesis were dramatically elevated in the absence of Arf, causing these cells to exhibit tremendous gains in protein amounts and increases in cell volume. The transcription of ribosomal DNA (rDNA), the processing of nascent rRNA molecules, and the nuclear export of ribosomes were all increased in the absence of ARF. Similar results were obtained using targeted lentiviral RNA interference of ARF in wild-type MEFs. Postmitotic osteoclasts from Arf-null mice exhibited hyperactivity in vitro and in vivo, demonstrating a physiological function for basal ARF. Moreover, the knockdown of NPM blocked the increases in Arf(-/-) ribosome output and osteoclast activity, demonstrating that these gains require NPM. Thus, basal ARF proteins act as a monitor of steady-state ribosome biogenesis and growth independent of their ability to prevent unwarranted hyperproliferation. |
N-ethyl-N-nitrosourea (ENU)-induced meningiomatosis and meningioma in p16(INK4a)/p19(ARF) tumor suppressor gene-deficient mice. | The cyclin-dependent kinase (CDK) inhibitor p16(INK4a) and the MDM2 ubiquitin ligase inhibitor p19(ARF) are critical to the regulation of cell cycle progression. Their loss by deletion, mutation or epigenetic silencing is a common molecular alteration in many human cancers. To investigate the role of p16(INK4a)/p19(ARF) deficiency in CNS tumor pathogenesis, pregnant mice bearing p16(-/-)/p19(-/-), p16(+/-)/p19(+/-), and p16(+/+)/p19(+/+) embryos were exposed transplacentally on gestation day 14 to a single dose of the potent carcinogen, ethylnitrosourea (ENU). p16(+/-)/p19(+/-) male mice treated with ENU developed meningial proliferative lesions with a high incidence (5/10). The incidence was lower in other ENU-treated animals of both sexes and none occurred in saline-treated control animals. The lesions ranged from widespread meningeal proliferation and plaque-like thickening by neoplastic spindle cells consistent with meningiomatosis to a larger discrete mass consistent with a meningioma. Ultrastructural analysis revealed the presence of intercellular junctions between cells, supporting a meningothelial histogenesis. Spontaneous meningiomas occur rarely in wild-type mice but are a common neoplasm afflicting humans, accounting for between 13 and 26% of primary intracranial neoplasms. This ENU inducible meningeal lesion in p16(+/-)/p19(+/-) mice may provide additional insight into the pathogenesis of meningeal neoplasia and aid the development of therapeutics. |
"Concomitant loss of the Ink4a/Arf tumor suppressor locus accelerates tumor formation and metastasis, suggesting potential roles for the p16 and p19 tumor suppressors in this process." | Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. HCC patients frequently present with disease that has metastasized to other regions of the liver, the portal vein, lymph nodes, or lungs, leading to poor prognoses. Therefore, model systems that allow exploration of the molecular mechanisms underlying metastasis in this disease are greatly needed. We describe here a metastatic HCC model generated after the somatic introduction of the mouse polyoma virus middle T antigen to mice with liver-specific deletion of the Trp53 tumor suppressor locus and show the cell autonomous effect of p53 loss of function on HCC metastasis. We additionally find that cholangiocarcinoma also develops in these mice, and some tumors display features of both HCC and cholangiocarcinoma, suggestive of origin from liver progenitor cells. Concomitant loss of the Ink4a/Arf tumor suppressor locus accelerates tumor formation and metastasis, suggesting potential roles for the p16 and p19 tumor suppressors in this process. Significantly, tumor cell lines isolated from tumors lacking both Trp53 and Ink4a/Arf display enhanced invasion activity in vitro relative to those lacking Trp53 alone. Thus, our data illustrate a new model system amenable for the analysis of HCC metastasis. |
ARF tumor suppressor has a role in mouse models of acute leukemias [review] | The prototypical Bcr-Abl chimeric oncoprotein is central to the pathogenesis of chronic myelogenous leukemias (CMLs) and a subset of acute lymphoblastic leukemias (Ph+ ALLs). The constitutive tyrosine kinase transforms either hematopoietic stem cells (in CML) or committed pre-B lymphoid progenitors (in Ph+ ALL) to generate these distinct diseases. The INK4A/ARF tumor suppressor locus is frequently deleted in both B- and T-lineage ALLs, including Ph+ ALL, whereas the locus remains intact in CML. In murine bone marrow transplant models and after transfer of syngeneic Bcr-Abl-transformed pre-B cells into immunocompetent recipient animals, Arf gene inactivation dramatically decreases the latency and enhances the aggressiveness of Bcr-Abl-induced lymphoblastic leukemia. Targeted inhibition of the Bcr-Abl kinase with imatinib provides highly effective therapy for CML, but Ph+ ALL patients do not experience durable remissions. Despite exquisite in vitro sensitivity of Arf-null, BCR-ABL+ pre-B cells to imatinib, these cells efficiently establish lethal leukemias when introduced into immunocompetent mice that receive continuous, maximal imatinib therapy. Bcr-Abl confers interleukin-7 (IL-7) independence to pre-B cells, but imatinib treatment restores the requirement for this cytokine. Hence, IL-7 can reduce the sensitivity of Bcr-Abl+ pre-B cells to imatinib. Selective inhibitors of both Bcr-Abl and the IL-7 transducing JAK kinases may therefore prove beneficial in treating Ph+ ALL. |
Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse | The Rb/p16(Ink4a) and p53/p19Arf tumor suppressor pathways have been linked to diverse cancer-relevant processes, including those governing the cellular responses to telomere dysfunction. In this study, we sought to provide direct genetic evidence of a role for the Ink4a/Arf tumor suppressor gene, encoding both p16(Ink4a) and p19(Arf), in modulating the cellular and tissue phenotypes associated with telomere dysfunction by using the mTerc Ink4a/Arf mouse model. In contrast to the rescue associated with p53 deficiency, Ink4a/Arf deficiency did not attenuate the degenerative phenotypes elicited by telomere dysfunction in the late-generation mTerc-/- mice. Furthermore, in contrast to accelerated cancer onset and increased epithelial cancers of late-generation mTerc-/- p53 mutant mice, late-generation mTerc-/- Ink4a/Arf mutant mice experienced a delayed tumor onset and maintained the lymphoma and sarcoma spectrum. Consistent with the negligible role of Ink4a/Arf in the telomere checkpoint response in vivo, late-generation mTerc-/- Ink4a/Arf-/- tissues show activated p53, and derivative tumor cell lines sustain frequent loss of p53 function, whereas all early generation mTerc Ink4a/Arf-/- tumor cell lines remain intact for p53. In addition, the late-generation mTerc-/- Ink4a/Arf-/- tumors showed activation of the alternative lengthening of telomere mechanism, underscoring the need for adaptation to the presence of telomere dysfunction in the absence of p16(Ink4a) and p19(Arf). These observations highlight the importance of genetic context in dictating whether telomere dysfunction promotes or suppresses age-related degenerative conditions as well as the rate of initiation and type of spontaneous cancers. |
Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor. | PURPOSE: Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. METHODS: Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. RESULTS: The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. CONCLUSIONS: In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development. |
Regulation of the Arf tumor suppressor in Emicro-Myc transgenic mice: longitudinal study of Myc-induced lymphomagenesis. | Lymphomagenesis in Emu-Myc mice is opposed by the Arf tumor suppressor, whose inactivation compromises p53 function and accelerates disease. Finding nascent Emu-Myc-induced tumors in which p19Arf causes cell-cycle arrest or apoptosis is problematic, since such cells will be eliminated until Arf or p53 function is lost. Knock-in mice expressing a green fluorescent protein (GFP) in lieu of Arf coding sequences allow analysis of Arfpromoter regulation uncoupled from p19Arf action. Prior to frank lymphoma development, unexpectedly low levels of Emu-Myc-induced p19Arf or GFP were expressed. However, as lymphomas arose in Arf+/GFP heterozygotes, additional oncogenic events synergized with Emu-Myc to further induce the functionally null Arf-Gfp allele. Concomitant up-regulation of p19Arf was not observed; instead, the wild-type allele was inactivated. We infer that very low levels of Arf are tumor suppressive, and that further induction provides the selective pressure for the emergence of tumors that have inactivated the gene. |
role for the tumor suppressor ARF in viral infection surveillance | Oncogenic viruses frequently target the pathways controlled by tumor suppressor genes, suggesting an extra function for these proteins as antiviral factors. The control exerted by the tumor suppressor Arf on cellular proliferation is crucial to restrict tumor development; however, a potential contribution of Arf to prevent viral infectivity has remained unexplored. In the present study, we investigated the consequences of loss or increased expression of Arf on viral infection. Our results reveal that ARF expression is induced by interferon and after viral infection. Furthermore, we show that ARF protects against viral infection in a gene dosage-dependent manner, and that this antiviral action is mediated in part by PKR through a mechanism that involves ARF-induced release of PKR from nucleophosmin complexes. Finally, Arf-null mice were hypersensitive to viral infection compared to wild-type mice. Together, our results reveal a novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. |
The tumor suppressor p16Ink4a regulates T lymphocyte survival. | In contrast to other cell cycle inhibitors, the tumor suppressor p16Ink4a is not detectable or expressed at very low levels in embryonic and adult mouse tissues, and therefore it has often been considered as a specialized checkpoint protein that does not participate in the control of normal cell cycle progression. However, Ink4a-/- mice possess increased thymus size and cellularity, thus suggesting the involvement of p16(Ink4a) in the control of thymocyte proliferation. In this study, we found increased numbers of CD8 and CD4 T lymphocytes in thymus and spleen from Ink4a-/- mice. Unexpectedly, this was not related to an increase in T-cell division rates, which were similar in lymphoid organs of Ink4a-/- and wild-type mice. In contrast, T-cell apoptosis rates were significantly decreased in thymus and spleen from Ink4a-/- mice. Moreover, whereas p16Ink4a-deficient and wild-type T cells were equally sensitive to Fas or TCR-mediated apoptosis, the former were clearly more resistant to apoptosis induced by oxidative stress or gamma irradiation. Our results indicate that p16Ink4a function is associated with T-cell apoptosis, and subsequently contributes to the control of T-cell population size in lymphoid organs. |
p19(Arf) responds to specific developmental cues to disrupt platelet-derived growth factor receptor beta signaling in the developing eye extend existing paradigms for Arf tumor suppressor gene biology | Arf is a key mammalian tumor suppressor gene known to be activated in response to aberrant mitogenic signals leading to both p53-dependent and -independent effects. We recently uncovered a new and somewhat unexpected function for mouse Arf as a regulator of mural cell accumulation within an ocular vascular bed destined to regress in the postnatal period. We found that the Arf gene product, p19(Arf), blocks mural cell proliferation driven by Platelet-derived growth factor receptor beta (Pdgfrbeta) in the developing vitreous. In vivo studies and analyses of cultured cells indicate that p19(Arf) dampens the expression of Pdgfrbeta. In cultured mouse embryo fibroblasts, p19(Arf) accomplishes this independently of two established effectors - Mdm2 and p53. Our findings indicating that p19(Arf) responds to specific developmental cues to disrupt Pdgfrbeta signaling in the developing eye extend existing paradigms for Arf tumor suppressor gene biology. |
INK4a/ARF: a multifunctional tumor suppressor locus. | The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo. |
Ink4a and Arf have independent and differential tumor suppressor functions in vivo in the glial cell compartment. | Homozygous deletion of the INK4a-ARF locus is one of the most frequent mutations found in human glioblastoma. We have previously shown that combined Ink4a-Arf loss can increase tumor incidence in both glial progenitor cells and astrocytes during mouse gliomagenesis. Here we have investigated the separate contribution of loss of each of the tumor suppressor genes in glial progenitor cells and astrocytes in Akt + Kras-induced gliomagenesis. We show that Arf is the major tumor suppressor gene in both cell types. Arf loss generated glioblastomas from both nestin-expressing glial progenitor cells and glial fibrillary acidic protein-expressing astrocytes, with a significantly higher incidence in astrocytes. Ink4a loss, on the other hand, could only significantly contribute to gliomagenesis from glial progenitor cells and the induced tumors were of lower malignancy than those seen in Arf-deficient mice. Thus, Ink4a and Arf have independent and differential tumor suppressor functions in vivo in the glial cell compartment. |
Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene. | PURPOSE: Persistent hyperplastic primary vitreous (PHPV) is an idiopathic developmental eye disease associated with failed involution of the hyaloid vasculature. The present work addressed the pathogenesis of PHPV in a mouse model that replicates many aspects of the human disease. METHODS: Ophthalmoscopic and histologic analyses documented pathologic processes in eyes of mice lacking the Arf gene compared with Ink4a-deficient and wild-type control animals. Immunohistochemical staining, in situ hybridization, and RT-PCR demonstrated the expression of relevant gene products. Arf gene expression was determined by in situ hybridization using wholemounts of wild-type mouse eyes and by immunofluorescence staining for green fluorescent protein (GFP) in Arf(+/GFP) heterozygous knock-in mouse eyes. RESULTS: Abnormalities in Arf(-/-) mice mimicked those found in patients with severe PHPV. The mice had microphthalmia; fibrovascular, retrolental tissue containing retinal pigment epithelial cells and remnants of the hyaloid vascular system; posterior lens capsule destruction with lens degeneration and opacity; and severe retinal dysplasia and detachment. Eyes of mice lacking the overlapping Ink4a gene were normal. Arf was selectively expressed in perivascular cells within the vitreous of the postnatal eye. Cells composing the retrolental mass in Arf(-/-) mice expressed the Arf promoter. The remnant hyaloid vessels expressed Flk-1. Its ligand, vascular endothelial growth factor (Vegf), was expressed in the retrolental tissue and the adjacent dysplastic neuroretina. CONCLUSIONS: Arf(-/-) mice have features that accurately mimic severe PHPV. In the HVS, Arf expression in perivascular cells may block their accumulation or repress Vegf expression to promote HVS involution and prevent PHPV. |
Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. | Tumor development is dependent upon the inactivation of two key tumor-suppressor networks, p16(Ink4a)-cycD/cdk4-pRB-E2F and p19(Arf)-mdm2-p53, that regulate cellular proliferation and the tumor surveillance response. These networks are known to intersect with one another, but the mechanisms are poorly understood. Here, we show that E2F directly participates in the transcriptional control of Arf in both normal and transformed cells. This occurs in a manner that is significantly different from the regulation of classic E2F-responsive targets. In wild-type mouse embryonic fibroblasts (MEFs), the Arf promoter is occupied by E2F3 and not other E2F family members. In quiescent cells, this role is largely fulfilled by E2F3b, an E2F3 isoform whose function was previously undetermined. E2f3 loss is sufficient to derepress Arf, triggering activation of p53 and expression of p21(Cip1). Thus, E2F3 is a key repressor of the p19(Arf)-p53 pathway in normal cells. Consistent with this notion, Arf mutation suppresses the activation of p53 and p21(Cip1) in E2f3-deficient MEFs. Arf loss also rescues the known cell cycle re-entry defect of E2f3(-/-) cells, and this correlates with restoration of appropriate activation of classic E2F-responsive genes. Our data also demonstrate a direct role for E2F in the oncogenic activation of Arf. Specifically, we observe recruitment of the endogenous activating E2Fs, E2F1, and E2F3a, to the Arf promoter. Thus, distinct E2F complexes directly contribute to the normal repression and oncogenic activation of Arf. We propose that monitoring of E2F levels and/or activity is a key component of Arf's ability to respond to inappropriate, but not normal cellular proliferation. |
Cav-1 cooperates with the tumor suppressor INK4a genetic locus to prevent cell proliferation and oncogene-induced tumorigenesis | Tumorigenesis is a multistep process that involves a series of genetic changes or "multiple hits," leading to alterations in signaling, proliferation, immortalization, and transformation. Many of the molecular factors that govern tumor initiation and progression remain unknown. Here, we evaluate the transformation suppressor potential of caveolin-1 (Cav-1) and its ability to cooperate with a well established tumor suppressor, the INK4a locus. To study the effects of loss of caveolin-1 on cellular transformation, we established immortalized primary mouse embryonic fibroblasts (MEFs) expressing and lacking caveolin-1 by interbreeding Cav-1 (+/+) and Cav-1 (-/-) mice with INK4a (-/-) mice. Analysis of these cells reveals that loss of caveolin-1 confers a significant growth advantage, as measured via cellular proliferation and cell cycle analysis. Loss of caveolin-1 in the INK4a (-/-) genetic background results in constitutive hyperactivation of the p42/44 MAP kinase cascade, decreased expression of p21(Cip1), as well as cyclin D1 and PCNA overexpression, consistent with their hyperproliferative phenotype. Importantly, in cells lacking Cav-1 expression, transformation by activated oncogenes (H-Ras(G12V) or v-Src) results in increased tumor growth in vivo (up to >40-fold). Finally, INK4a (-/-)/Cav-1 (-/-) mice demonstrate disturbed mammary epithelial ductal morphology, with hyperplasia, increased side-branching, and fibrosis. Our results provide important new evidence for the transformation suppressor properties of Cav-1 and the first molecular genetic evidence that Cav-1 cooperates with a tumor suppressor, namely the INK4a genetic locus. |
An Arf(GFP/GFP) reporter mouse reveals that the Arf tumor suppressor monitors latent oncogenic signals in vivo. | Understanding how the Arf tumor suppressor is activated in response to abnormally elevated mitogenic signaling thresholds is a particularly vexing problem. Studies of a knock-in mouse strain in which sequences encoding green fluorescent protein were substituted for those encoding p19Arf argue that the Arf gene responds to latent oncogenic signals in vivo to eliminate incipient cancer cells. |
Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. | Induction of the Arf tumor suppressor gene by elevated thresholds of mitogenic signals activates a p53-dependent transcriptional response that triggers either growth arrest or apoptosis, thereby countering abnormal cell proliferation. Conversely, Arf inactivation is associated with tumor development. expression of Arf in tissues of adult mice is difficult to detect, possibly because its induction leads to the arrest or elimination of incipient tumor cells. We replaced coding sequences of exon 1beta of the mouse cellular Arf gene with a cDNA encoding GFP, thereby producing Arf-null animals in which GFP expression is driven by the intact Arf promoter. The Arf promoter was induced in several biologic settings previously shown to elicit mouse p19Arf expression. Inactivation of Arf in this manner led to the outgrowth of tumor cells expressing GFP, thereby providing direct evidence that the Arf promoter monitors latent oncogenic signals in vivo. |
ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 family proteins. | A tumor suppressor gene product, ARF, sensitizes cells to apoptosis in the presence of appropriate collateral signals. In this study, we analyzed the mechanism of ARF-dependent apoptosis and demonstrated that ARF induces mitochondria-dependent apoptosis in p53 wild-type, ARF/p16-null cells. We also found that ARF evokes cytochrome c release from mitochondria, decreases mitochondrial membrane potential, and activates pro-caspase-9 to induce apoptosis. Our findings suggest that this apoptotic cellular modulation is brought about by up-regulation of the proapoptotic Bcl-2 family proteins Bax and Bim and down-regulation of antiapoptotic Bcl-2 in mitochondrial fractions. Additionally, ARF seems to down-regulate Bcl-2 in a p53-dependent manner while up-regulating Bax/Bim via a p53-independent pathway. |
"Expression and characterization of Syrian golden hamster p16, a homologue of human tumor suppressor p16 INK4A." | The p16(INK4A)/CDKN2A tumor suppressor gene is known to be inactivated in up to 98% of human pancreatic cancer specimens and represents a potential target for novel therapeutic intervention. Chemically induced pancreatic tumors in Syrian golden hamsters have been demonstrated to share many morphologic and biological similarities with human pancreatic tumors and this model may be appropriate for studying therapies targeting p16(INK4A)/CDKN2A. The purpose of this study was to investigate the fundamental biochemistry of hamster P16 protein. Using both in vivo and in vitro approaches, the CDK4 binding affinity, kinase inhibitory activity, and thermodynamic stability of hamster and human P16 proteins were evaluated. Furthermore, a structural model of hamster P16 protein was generated. These studies demonstrate that hamster P16 protein is biochemically indistinguishable from human P16 protein. From a biochemical perspective, these data strongly support the study of p16-related pancreatic oncogenesis and cancer therapies in the hamster model. |
A major functional difference between the mouse and human ARF tumor suppressor proteins. | Suppression of tumorigenesis is considerably more stringent in the human than in the much shorter lived mouse species, and the reasons for this difference are poorly understood. We investigated functional differences in the control of the ARF (alternative reading frame) protein that acts upstream of p53 and is encoded along with p16(INK4a) at a major tumor suppressor locus in both the human and mouse genomes. The mouse and human ARF proteins are substantially divergent at their carboxyl termini. We have shown that the mouse ARF protein (p19ARF) interacts with Pex19p in the cell cytoplasm leading to its nuclear exclusion and repression of its p53 activation function. The human ARF protein (p14ARF) is substantially smaller than its mouse counterpart and is not subject to this functional inactivation by Pex19p. In an identical cellular background, ribozymes directed against Pex19p enhanced p19ARF- but not p14ARF-activated p53 function. This is the first demonstration of a functional difference between the mouse and human ARF proteins. In view of the major role of ARF in tumor suppression, this distinction may contribute to the different levels of tumor proneness of these species. |
The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development | A key tumor suppressor mechanism that is disrupted frequently in human cancer involves the ARF and p53 genes. In mouse fibroblasts, the Arf gene product responds to abnormal mitogenic signals to activate p53 and trigger either cell cycle arrest or apoptosis. Recent evidence indicates that Arf also has p53-independent functions that may contribute to its tumor suppressor activity. Using Arf(-/-) and p53(-/-) mice, we have discovered a p53-independent requirement for Arf in the developmental regression of the hyaloid vascular system (HVS) in the mouse eye. Arf is expressed in the vitreous of the eye and is induced before HVS regression in the first postnatal week. In the absence of Arf, failed HVS regression causes a pathological process that resembles persistent hyperplastic primary vitreous, a developmental human eye disease thought to have a genetic basis. These findings demonstrate an essential and unexpected role for Arf during mouse eye development, provide insights into the potential genetic basis for persistent hyperplastic primary vitreous, and indicate that Arf regulates vascular regression in a p53-independent manner. The latter finding raises the possibility that Arf may function as a tumor suppressor at least in part by regulating tumor angiogenesis. |
Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. | To investigate the role of an activated K-Ras gene in the initiation and maintenance of lung adenocarcinomas, we developed transgenic mice that express murine K-Ras4b(G12D) under the control of doxycycline in type II pneumocytes. Focal proliferative lesions of alveolar type II pneumocytes were observed as early as seven days after induction with doxycycline; after two months of induction, the lungs contained adenomas and adenocarcinomas, with focal invasion of the pleura at later stages. Removal of doxycycline caused a rapid fall in levels of mutant K-Ras RNA and concomitant apoptotic regression of both the early proliferative lesions and the tumors. Tumor burden was dramatically decreased by three days after withdrawal, and tumors were undetectable after one month. When similar experiments were performed with animals deficient in either the p53 gene or the Ink4A/Arf locus, tumors arose more quickly (within one month of exposure to doxycycline) and displayed more obvious histological features of malignancy; nevertheless, these tumors also regressed rapidly when the inducer was removed, implying that continued production of mutant K-Ras is necessary to maintain the viability of tumor cells in the absence as well as the presence of tumor suppressor genes. We also show that the appearance and regression of these pulmonary tumors can be readily monitored in anesthetized transgenic animals by magnetic resonance imaging. |
Functions as a tumor suppressor in mice. | The cyclin-dependent kinase inhibitor p16INK4a can induce senescence of human cells, and its loss by deletion, mutation or epigenetic silencing is among the most frequently observed molecular lesions in human cancer. Overlapping reading frames in the INK4A/ARF gene encode p16INK4a and a distinct tumour-suppressor protein, p19ARF (ref. 3). Here we describe the generation and characterization of a p16Ink4a-specific knockout mouse that retains normal p19Arf function. Mice lacking p16Ink4a were born with the expected mendelian distribution and exhibited normal development except for thymic hyperplasia. T cells deficient in p16Ink4a exhibited enhanced mitogenic responsiveness, consistent with the established role of p16Ink4a in constraining cellular proliferation. In contrast to mouse embryo fibroblasts (MEFs) deficient in p19Arf (ref. 4), p16Ink4a-null MEFs possessed normal growth characteristics and remained susceptible to Ras-induced senescence. Compared with wild-type MEFs, p16Ink4a-null MEFs exhibited an increased rate of immortalization, although this rate was less than that observed previously for cells null for Ink4a/Arf, p19Arf or p53 (refs 4, 5). Furthermore, p16Ink4a deficiency was associated with an increased incidence of spontaneous and carcinogen-induced cancers. These data establish that p16Ink4a, along with p19Arf, functions as a tumour suppressor in mice. |
Loss of heterozygosity at the proximal-mid part of mouse chromosome 4 defines two novel tumor suppressor gene loci in T-cell lymphomas. | Recent studies in our laboratory reported frequent loss of heterozygosity (LOH) on mouse chromosome 4 in T-cell lymphomas, identifying three candidate tumor suppressor regions (TLSR1-3). To determine the possible existence of other tumor suppressor gene loci on the proximal-mid part of chromosome 4 and to clarify whether the p16(INK4a) (alpha and beta) and p15(INK4b) genes are the inactivation targets of deletion at TLSR1, we have tested 73 gamma-radiation-induced T-cell lymphomas of F1 hybrid mice by LOH analysis. Frequent LOH was found at the INK4a and INK4b loci and the surrounding markers D4Mit77, D4Mit245 and D4Wsm1. In addition, we identified two distinct regions of significant allelic losses in the proximal-mid part of chromosome 4, defined by the markers D4Mit116 (TLSR4) and D4Mit21 (TLSR5). Taken together, this evidence and our previous data indicate the existence of at least five different candidate sites for tumor suppressor genes on chromosome 4, thus revealing a main role for this chromosome in the development of mouse T-cell lymphomas. |
Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. | The alternative reading frame product (p19ARF) of the mouse INK4a/ARF locus is induced by oncoproteins such as Myc and E1A as part of a checkpoint response that limits cell cycle progression in response to hyperproliferative signals. ARF binds directly to Mdm2 to prevent down-regulation of p53 and thereby promotes p53-dependent transcription and cell cycle arrest. However, ARF is not required for p53 induction in response to ionizing radiation or other forms of DNA damage. Animals lacking a functional ataxia telangiectasia (Atm) gene are exquisitely sensitive to ionizing radiation; Atm-null mouse embryo fibroblasts (MEFs) undergo premature replicative arrest, which is relieved by the loss of p53. Here we show that the loss of ARF expands the life expectancy of Atm-null MEFs, but alters neither the sensitivity of Atm-null mice to ionizing radiation nor their propensity to develop lymphomas early in life. Therefore, whereas ARF and Atm signal to p53 through distinct pathways, the loss of ARF can modify p53-dependent features of the Atm-null phenotype. |
Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. | expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19(ARF) synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis. |
Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved |