Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

11228

Name

RASSF8

Synonymous

C12orf2|HOJ1;Ras association (RalGDS/AF-6) domain family (N-terminal) member 8;RASSF8;Ras association (RalGDS/AF-6) domain family (N-terminal) member 8

Definition

carcinoma-associated protein HOJ-1|ras association domain-containing protein 8

Position

12p12.3

Gene type

protein-coding

Source

Count: 2; Pubmed_search,Generif

Sentence

Abstract

RASSF8 as a tumor suppressor gene that is essential for maintaining AJs function in epithelial cells and have a role in epithelial cell migration.

The Ras-assocation domain family (RASSF) of tumor suppressor proteins until recently contained six proteins named RASSF1-6. Recently, four novel family members, RASSF7-10, have been identified by homology searches for RA-domain-containing proteins. These additional RASSF members are divergent and structurally distinct from RASSF1-6, containing an N-terminal RA domain and lacking the Sav/RASSF/Hpo (SARAH) domain. Here, we show that RASSF8 is ubiquitously expressed throughout the murine embryo and in normal human adult tissues. Functionally, RNAi-mediated knockdown of RASSF8 in non-small-cell lung cancer (NSCLC) cell lines, increased anchorage-independent growth in soft agar and enhanced tumor growth in severe combined immunodeficiency (SCID) mice. Furthermore, EdU staining of RASSF8-depleted cells showed growth suppression in a manner dependent on contact inhibition. We show that endogenous RASSF8 is not only found in the nucleus, but is also membrane associated at sites of cell-cell adhesion, co-localizing with the adherens junction (AJ) component beta-catenin and binding to E-cadherin. Following RASSF8 depletion in two different lung cancer cell lines using alternative small interfering RNA (siRNA) sequences, we show that AJs are destabilized and E-cadherin is lost from the cell membrane. The AJ components beta-catenin and p65 are also lost from sites of cell-cell contact and are relocalized to the nucleus with a concomitant increase in beta-catenin-dependent and nuclear factor-kappaB (NF-kappaB)-dependent signaling following RASSF8 depletion. RASSF8 may also be required to maintain actin -cytoskeletal organization since immunofluorescence analysis shows a striking disorganization of the actin- cytoskeleton following RASSF8 depletion. Accordingly, scratch wound healing studies show increased cellular migration in RASSF8-deficient cells. These results implicate RASSF8 as a tumor suppressor gene that is essential for maintaining AJs function in epithelial cells and have a role in epithelial cell migration.

The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-kappaB signaling pathways.

The Ras-assocation domain family (RASSF) of tumor suppressor proteins until recently contained six proteins named RASSF1-6. Recently, four novel family members, RASSF7-10, have been identified by homology searches for RA-domain-containing proteins. These additional RASSF members are divergent and structurally distinct from RASSF1-6, containing an N-terminal RA domain and lacking the Sav/RASSF/Hpo (SARAH) domain. Here, we show that RASSF8 is ubiquitously expressed throughout the murine embryo and in normal human adult tissues. Functionally, RNAi-mediated knockdown of RASSF8 in non-small-cell lung cancer (NSCLC) cell lines, increased anchorage-independent growth in soft agar and enhanced tumor growth in severe combined immunodeficiency (SCID) mice. Furthermore, EdU staining of RASSF8-depleted cells showed growth suppression in a manner dependent on contact inhibition. We show that endogenous RASSF8 is not only found in the nucleus, but is also membrane associated at sites of cell-cell adhesion, co-localizing with the adherens junction (AJ) component beta-catenin and binding to E-cadherin. Following RASSF8 depletion in two different lung cancer cell lines using alternative small interfering RNA (siRNA) sequences, we show that AJs are destabilized and E-cadherin is lost from the cell membrane. The AJ components beta-catenin and p65 are also lost from sites of cell-cell contact and are relocalized to the nucleus with a concomitant increase in beta-catenin-dependent and nuclear factor-kappaB (NF-kappaB)-dependent signaling following RASSF8 depletion. RASSF8 may also be required to maintain actin -cytoskeletal organization since immunofluorescence analysis shows a striking disorganization of the actin- cytoskeleton following RASSF8 depletion. Accordingly, scratch wound healing studies show increased cellular migration in RASSF8-deficient cells. These results implicate RASSF8 as a tumor suppressor gene that is essential for maintaining AJs function in epithelial cells and have a role in epithelial cell migration.

Identification of RASSF8 as a candidate lung tumor suppressor gene.

The RASSF8 gene, which maps close to the KRAS2 gene, contains a RAS-associated domain and encodes a protein that is evolutionarily conserved from fish to humans. Analysis of the RASSF8 transcript revealed a complex expression pattern of 5'-UTR mRNA isoforms in normal lung and in lung adenocarcinomas (ADCAs), with no apparent differences. However, RASSF8 gene transcript levels were approximately seven-fold-lower in lung ADCAs as compared to normal lung tissue. expression of RASSF8 protein by transfected lung cancer cells led to inhibition of anchorage-independent growth in soft agar in A549 cells and reduction of clonogenic activity in NCI-H520 cells. These results raise the possibility protein encoded by RASSF8 is a novel tumor suppressor for lung cancer.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas