Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

1490

Name

CTGF

Synonymous

CCN2|HCS24|IGFBP8|NOV2;connective tissue growth factor;CTGF;connective tissue growth factor

Definition

CCN family member 2|IBP-8|IGF-binding protein 8|IGFBP-8|hypertrophic chondrocyte-specific protein 24|insulin-like growth factor-binding protein 8

Position

6q23.1

Gene type

protein-coding

Source

Count: 2; Pubmed_search,Generif

Sentence

Abstract

Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer.

Connective tissue growth factor (CTGF) is a secreted protein belonging to the CCN family, members of which are implicated in various biological processes. We identified a homozygous loss of CTGF (6q23.2) in the course of screening a panel of ovarian cancer cell lines for genomic copy number aberrations using in-house array-based comparative genomic hybridization. CTGF mRNA expression was observed in normal ovarian tissue and immortalized ovarian epithelial cells but was reduced in many ovarian cancer cell lines without its homozygous deletion (12 of 23 lines) and restored after treatment with 5-aza 2'-deoxycytidine. The methylation status around the CTGF CpG island correlated inversely with the expression, and a putative target region for methylation showed promoter activity. CTGF methylation was frequently observed in primary ovarian cancer tissues (39 of 66, 59%) and inversely correlated with CTGF mRNA expression. In an immunohistochemical analysis of primary ovarian cancers, CTGF protein expression was frequently reduced (84 of 103 cases, 82%). Ovarian cancer tended to lack CTGF expression more frequently in the earlier stages (stages I and II) than the advanced stages (stages III and IV). CTGF protein was also differentially expressed among histologic subtypes. Exogenous restoration of CTGF expression or treatment with recombinant CTGF inhibited the growth of ovarian cancer cells lacking its expression, whereas knockdown of endogenous CTGF accelerated growth of ovarian cancer cells with expression of this gene. These results suggest that epigenetic silencing by hypermethylation of the CTGF promoter leads to a loss of CTGF function, which may be a factor in the carcinogenesis of ovarian cancer in a stage-dependent and/or histologic subtype-dependent manner.

"CTGF may behave as a secreted tumor suppressor protein in the normal lung, and its expression is suppressed in many NSCLCs."

Connective tissue growth factor (CTGF) is a secreted protein that belongs to CCN family. The proteins in this family are implicated in various biological processes, such as angiogenesis, adhesion, migration, and apoptosis. In this study, we explored the roles of CTGF in lung tumorigenesis. The expression levels of CTGF in 58 lung cancer samples were reduced by >2 fold in 57% of the samples compared with matched normal samples using real-time reverse transcription-PCR. These results were confirmed by immunohistochemical staining for CTGF in normal lung epithelia and lung cancer. Cellular proliferation was inhibited in non-small cell lung cancer (NSCLC) cell lines NCI-H460, NCI-H520, NCI-H1299, and SK-MES-1 by CTGF overexpression. Partially purified CTGF suppressed lung cancer cell growth. The growth inhibition caused by CTGF overexpression was associated with growth arrest at G(0)-G(1) and prominent induction of p53 and ADP ribosylation factor. Most interestingly, overexpression of CTGF suppressed insulin-like growth factor-I-dependent Akt phosphorylation and epidermal growth factor-dependent extracellular signal-regulated kinase 1/2 phosphorylation. In summary, NSCLC cells expressed decreased levels of CTGF compared with normal lung cells; this lower expression has an effect on lung cancer cell proliferation and its cellular response to growth factors. Our data suggest that CTGF may behave as a secreted tumor suppressor protein in the normal lung, and its expression is suppressed in many NSCLCs.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas