Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

1848

Name

DUSP6

Synonymous

MKP3|PYST1;dual specificity phosphatase 6;DUSP6;dual specificity phosphatase 6

Definition

MAP kinase phosphatase 3|dual specificity protein phosphatase 6|dual specificity protein phosphatase PYST1|mitogen-activated protein kinase phosphatase 3|serine/threonine specific protein phosphatase

Position

12q22-q23

Gene type

protein-coding

Source

Count: 2; Pubmed_search,Generif

Sentence

Abstract

Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype.

Suppressive effects of DUSP6 in tumorigenesis and EMT-associated properties were observed. Dual-specificity phosphatase (DUSP6) is a MAP kinase phosphatase (MKP) negatively regulating the activity of ERK, one of the major molecular switches in the MAPK signaling cascade propagating the signaling responses during malignancies. The impact of DUSP6 in EMT and its contribution to tumor dissemination has not yet been characterized. Due to differences in tumor microenvironments affecting cell signaling during cancer progression, DUSP6 may play varying roles in tumor development. We sought to examine the potential role of DUSP6-mediated tumorigenesis and EMT-associated properties in two aerodigestive tract cancers, namely, esophageal squamous cell carcinoma (ESCC) and nasopharyngeal carcinoma (NPC). Significant loss of DUSP6 was observed in 100% of 11 ESCC cell lines and 71% of seven NPC cell lines. DUSP6 expression was down-regulated in 40% of 30 ESCC tumor tissues and 75% of 20 NPC tumor tissues compared to their respective normal counterparts. Suppressive effects of DUSP6 in tumor formation and cancer cell mobility are seen in in vivo tumorigenicity assay and in vitro colony formation, three-dimensional Matrigel culture, cell migration and invasion chamber tests. Notably, overexpression of DUSP6 impairs EMT-associated properties. Furthermore, tissue microarray analysis reveals a clinical association of DUSP6 expression with better patient survival. Taken together, our study provides a novel insight into understanding the functional impact of DUSP6 in tumorigenesis and metastasis of ESCC and NPC.CI - Copyright (c) 2011 UICC.

Results show that DUSP6 exerts apparent tumor-suppressive effects in vitro and suggest that DUSP6 is a strong candidate tumor suppressor gene at 12q22 locus.

We previously found frequent loss of heterozygosity at 12q21 and 12q22-q23.1 in primary pancreatic cancers, and the DUSP6/MKP-3 gene residing in this region at 12q22 lost its expression in the great majority of pancreatic cancer cell lines. The DUSP6/MKP-3 protein is a dual-specificity phosphatase that dephosphorylates the active form of ERK, making a feedback loop to control ERK activity. Gain-of-function mutations of KRAS2 occur in the great majority of pancreatic cancer cells, and loss of expression of DUSP6/MKP-3 may synergistically promote constitutive activation of ERK and uncontrolled cell growth. To study loss of the feedback pathway and its impact on pancreatic cancer cell growth, we first investigated the expression of DUSP6/MKP-3 in primary pancreatic cancer tissues immunohistochemically; we found up-regulation in mildly as well as severely dysplastic/in situ carcinoma cells and down-regulation in invasive carcinoma, especially in the poorly differentiated type. Adenovirus-mediated reintroduction of DUSP6/MKP-3 into cultured pancreatic cancer cells induced strong expression of recombinant DUSP6/MKP-3 and reduction of phosphorylated ERK in a dose-dependent manner based on the multiplicity of infection and resulted in suppression of cell growth. Moreover, analyses by flow cytometry and immunocytochemistry revealed that the exogenous expression of DUSP6/MKP-3 induced apoptosis. These results show that DUSP6 exerts apparent tumor-suppressive effects in vitro and suggest that DUSP6 is a strong candidate tumor suppressor gene at 12q22 locus.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas