Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

23095

Name

KIF1B

Synonymous

CMT2|CMT2A|CMT2A1|HMSNII|KLP|NBLST1;kinesin family member 1B;KIF1B;kinesin family member 1B

Definition

kinesin superfamily protein KIF1B|kinesin-like protein KIF1B

Position

1p36.2

Gene type

protein-coding

Source

Count: 2; Pubmed_search,Generif

Sentence

Abstract

"KIF1Bbeta may act as a haploinsufficient tumor suppressor, and its allelic loss may be involved in the pathogenesis of neuroblastoma and other cancers."

Deletion of the distal region of chromosome 1 frequently occurs in a variety of human cancers, including aggressive neuroblastoma. Previously, we have identified a 500-kb homozygously deleted region at chromosome 1p36.2 harboring at least six genes in a neuroblastoma-derived cell line NB1/C201. Among them, only KIF1Bbeta, a member of the kinesin superfamily proteins, induced apoptotic cell death. These results prompted us to address whether KIF1Bbeta could be a tumor suppressor gene mapped to chromosome 1p36 in neuroblastoma. Hemizygous deletion of KIF1Bbeta in primary neuroblastomas was significantly correlated with advanced stages (p = 0.0013) and MYCN amplification (p < 0.001), whereas the mutation rate of the KIF1Bbeta gene was infrequent. Although KIF1Bbeta allelic loss was significantly associated with a decrease in KIF1Bbeta mRNA levels, its promoter region was not hypermethylated. Additionally, expression of KIF1Bbeta was markedly down-regulated in advanced stages of tumors (p < 0.001). Enforced expression of KIF1Bbeta resulted in an induction of apoptotic cell death in association with an increase in the number of cells entered into the G2/M phase of the cell cycle, whereas its knockdown by either short interfering RNA or by a genetic suppressor element led to an accelerated cell proliferation or enhanced tumor formation in nude mice, respectively. Furthermore, we demonstrated that the rod region unique to KIF1Bbeta is critical for the induction of apoptotic cell death in a p53-independent manner. Thus, KIF1Bbeta may act as a haploinsufficient tumor suppressor, and its allelic loss may be involved in the pathogenesis of neuroblastoma and other cancers.

The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor.

VHL, NF-1, c-Ret, and Succinate Dehydrogenase Subunits B and D act on a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells and requires the EglN3 prolyl hydroxylase as a downstream effector. Germline mutations of these genes cause familial pheochromocytoma and other neural crest-derived tumors. Using an unbiased shRNA screen we found that the kinesin KIF1Bbeta acts downstream from EglN3 and is both necessary and sufficient for neuronal apoptosis when NGF becomes limiting. KIF1Bbeta maps to chromosome 1p36.2, which is frequently deleted in neural crest-derived tumors including neuroblastomas. We identified inherited loss-of-function KIF1Bbeta missense mutations in neuroblastomas and pheochromocytomas and an acquired loss-of-function mutation in a medulloblastoma, arguing that KIF1Bbeta is a pathogenic target of these deletions.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas