Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

26524

Name

LATS2

Synonymous

KPM;LATS, large tumor suppressor, homolog 2 (Drosophila);LATS2;LATS, large tumor suppressor, homolog 2 (Drosophila)

Definition

LATS (large tumor suppressor, Drosophila) homolog 2|kinase phosphorylated during mitosis protein|large tumor suppressor homolog 2|serine/threonine kinase KPM|serine/threonine-protein kinase LATS2|serine/threonine-protein kinase kpm|warts-like kinase

Position

13q11-q12

Gene type

protein-coding

Source

Count: 3; Pubmed_search,UniProt,Generif

Sentence

Abstract

KIBRA associates with and activates Lats (large tumor suppressor) 1 and 2 kinases by stimulating their phosphorylation on the hydrophobic motif

The Hippo pathway controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. Recent genetic studies in Drosophila identified Kibra as a novel regulator of Hippo signaling. Human KIBRA has been associated with memory performance and cell migration. However, it is unclear whether or how KIBRA is connected to the Hippo pathway in mammalian cells. Here, we show that KIBRA associates with and activates Lats (large tumor suppressor) 1 and 2 kinases by stimulating their phosphorylation on the hydrophobic motif. KIBRA overexpression stimulates the phosphorylation of Yes-associated protein (YAP), the Hippo pathway effector. Conversely, depletion of KIBRA by RNA interference reduces YAP phosphorylation. Furthermore, KIBRA stabilizes Lats2 by inhibiting its ubiquitination. We also found that KIBRA mRNA is induced by YAP overexpression in both murine and human cells, suggesting the evolutionary conservation of KIBRA as a transcriptional target of the Hippo signaling pathway. Thus, our study revealed a new connection between KIBRA and mammalian Hippo signaling.

The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals.

The conserved Hippo signaling pathway regulates organ size in Drosophila and mammals. While a core kinase cascade leading from the protein kinase Hippo (Hpo) (Mst1 and Mst2 in mammals) to the transcription coactivator Yorkie (Yki) (YAP in mammals) has been established, upstream regulators of the Hippo kinase cascade are less well defined, especially in mammals. Using conditional knockout mice, we demonstrate that the Merlin/NF2 tumor suppressor and the YAP oncoprotein function antagonistically to regulate liver development. While inactivation of Yap led to loss of hepatocytes and biliary epithelial cells, inactivation of Nf2 led to hepatocellular carcinoma and bile duct hamartoma. Strikingly, the Nf2-deficient phenotypes in multiple tissues were largely suppressed by heterozygous deletion of Yap, suggesting that YAP is a major effector of Merlin/NF2 in growth regulation. Our studies link Merlin/NF2 to mammalian Hippo signaling and implicate YAP activation as a mediator of pathologies relevant to Neurofibromatosis 2.CI - (c) 2010 Elsevier Inc. All rights reserved.

"Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts."

We have cloned and characterized LATS2, a novel mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Northern blot analysis showed ubiquitous expression of mouse LATS2 (MmLATS2) mRNA, whereas expression of human LATS2 (HsLATS2) mRNA was enhanced in skeletal muscle and heart. Immunoblotting analysis of fractionated cell lysates showed HsLats2 to be a nuclear protein. We mapped the MmLATS2 gene to mouse chromosome 14 by interspecific backcross analysis. We also mapped the HsLATS2 gene (by fluorescence in situ hybridization) to the 13q11-q12 region, in which a loss of heterozygosity has been frequently observed in many primary cancers and to which the tumor suppressor genes RB and BRCA2 have also been mapped.CI - Copyright 2000 Academic Press.

MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2.

Aberrant growth of vascular smooth muscle cells (VSMCs) is a major cellular event in the pathogenesis of many proliferative vascular diseases. Recently, microRNA-31 (miR-31) has been found to play a critical role in cancer cell proliferation. However, the biological role of miR-31 in VSMC growth and the mechanisms involved are currently unknown. In the present study, the expression of rat mature miR-31 (rno-miR-31) was determined in cultured VSMCs and in rat carotid arteries. We identified that rno-miR-31 is an abundant miRNA in VSMCs, and its expression was significantly increased in proliferative VSMCs and in vascular walls with neointimal growth. The up-regulation of rno-miR-31 in proliferative VSMCs was inhibited by the inhibitor of mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK). By both gain-of-function and loss-of-function approaches, we demonstrated that rno-miR-31 had a proproliferative effect on VSMCs. We further identified that LATS2 (large tumor suppressor homolog 2) is a downstream target gene product of rno-miR-31 that is involved in rno-miR-31-mediated effect on VSMC proliferation. The LATS2 as a target gene protein of rno-miR-31 is verified in vivo in balloon-injured rat carotid arteries. The results suggest that MAPK/ERK/miR-31/LATS2 may represent a novel signaling pathway in VSMC growth. miR-31 is able to enhance VSMC proliferation via its downstream target gene product, LATS2.

Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor.

LATS2 kinase functions as part of the Hippo pathway to promote contact inhibition of growth and tumor suppression by phosphorylating and inhibiting the transcriptional coactivator YAP. LATS2 is activated by the MST2 kinase. How LATS2 is activated by MST2 in response to changes in cell density is unknown. Here we identify the angiomotin-family tight junction protein AMOTL2 as a novel activator of LATS2. Like AMOTL2, the other angiomotin-family proteins AMOT and AMOTL1 also activate LATS2 through a novel conserved domain that binds and activates LATS2. AMOTL2 binds MST2, LATS2, and YAP, suggesting that AMOTL2 might serve as a scaffold protein. We show that LATS2, AMOTL2, and YAP all localize to tight junctions, raising the possibility that clustering of Hippo pathway components at tight junctions might function to trigger LATS2 activation and growth inhibition in response to increased cell density.

The tumor suppressor Lats2 is pivotal in Aurora A and Aurora B signaling during mitosis.

Accurate coordination between chromosome segregation and cytokinesis by various mitotic kinases, such as Aurora, prevent tetraploidization and subsequent tumorigensis. The tumor suppressors Lats1 and Lats2 are serine/threonine kinases that localize to the centrosome and regulate cell cycle progression and apoptosis. In the present study, Aurora A was demonstrated to phosphorylate Lats2 on serine 380 (S380) during mitosis. Immunocytochemical observations revealed that the subcellular localization of Lats2 was distinct during the cell cycle and depended on which site was phosphorylated. Interestingly, the S380-phosphorylated Lats2 protein (pS380) colocalized at the central spindle with Aurora B. Physical interactions were observed between Aurora A, Lats2, Lats1 and Aurora B. The Lats1 kinase was shown to phosphorylate Aurora B. Cells expressing a nonphosphorylated mutant (S380A) of Lats2 caused chromosome missegregation and cytokinesis failure, similar to cells with aberrantly expressed Aurora B. Together, the results suggest that the Aurora A-Lats1/2-Aurora B axis might be a novel pathway that regulates accurate mitotic progression by ensuring the proper mitotic localization of Lats2.

"Results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells."

pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells.

Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers.

Defective expression of LATS2, a negative regulator of YAP oncoprotein, has been reported in cancer of prostate, breast, liver, brain, and blood origins. However, no transcriptional regulators for the LATS2 gene have been identified. Here we report that spontaneous mutation of the transcription factor FOXP3 reduces expression of the LATS2 gene in mammary epithelial cells. shRNA-mediated silencing of FOXP3 in normal or malignant mammary epithelial cells of mouse and human origin repressed LATS2 expression and increased YAP protein levels. LATS2 induction required binding of FOXP3 to a specific sequence in the LATS2 promoter, and this interaction contributed to FOXP3-mediated growth inhibition of tumor cells. In support of these results, reduced expression and somatic mutations of FOXP3 correlated strongly with defective LATS2 expression in microdissected prostate cancer tissues. Thus, defective expression of LATS2 is attributable to FOXP3 defects and may be a major independent determinant of YAP protein elevation in cancer. Our findings identify a novel mechanism of LATS2 downregulation in cancer and reveal an important tumor suppressor relay between the FOXP3 and HIPPO pathways which are widely implicated in human cancer.CI - (c)2011 AACR.

LATS2 is a tumor suppressor gene of malignant mesothelioma.

Malignant mesothelioma (MM) is an aggressive neoplasm associated with asbestos exposure. We carried out genome-wide array-based comparative genomic hybridization analysis with 14 MM cell lines. Three cell lines showed overlapping homozygous deletion at chromosome 13q12, which harbored the LATS2 (large tumor suppressor homolog 2) gene. With 6 other MM cell lines and 25 MM tumors, we found 10 inactivating homozygous deletions or mutations of LATS2 among 45 MMs. LATS2 encodes a serine/threonine kinase, a component of the Hippo tumor-suppressive signaling pathway, and we transduced LATS2 in MM cells with its mutation. Transduction of LATS2 inactivated oncoprotein YAP, a transcriptional coactivator, via phosphorylation, and inhibited MM cell growth. We also analyzed LATS2 immunohistochemically and found that 13 of 45 MM tumors had low expression of LATS2. Because NF2 is genetically mutated in 40% to 50% of MM, our data indicate that Hippo pathway dysregulation is frequent in MM cells with inactivation of LATS2 or an upstream regulator of this pathway, Merlin, which is encoded by NF2. Thus, our results suggest that the inactivation of LATS2 is one of the key mechanisms for constitutive activation of YAP, which induces deregulation of MM cell proliferation.

LATS2 tumor suppressor gene is regulated by tristetraprolin

LATS2 is a tumor suppressor gene implicated in the control of cell growth and the cell cycle. Here, we investigated the post-transcriptional regulation of LATS2 expression by tristetraprolin (TTP). Our results show that the expression level of LATS2 is inversely correlated with TTP expression in human cancer cell lines. Overexpression of TTP reduced the expression level of LATS2. Conversely, treatment with small interfering RNA against TTP increased the expression level of LATS2 through stabilization of LATS2 mRNA and suppressed the proliferation of A549 human lung cancer cells. LATS2 mRNA contains AU-rich elements (AREs) within the 3'-untranslated region, and TTP destabilized a luciferase mRNA containing LATS2 ARE. In addition, RNA electrophoretic mobility shift assay revealed that TTP directly bound to the ARE of LATS2 mRNA. These results establish LATS2 mRNA as a physiological target of TTP and suggest the possibility that TTP controls cell growth through regulation of LATS2 mRNA stability.

Silencing of the Lats2 tumor suppressor overrides a p53-dependent oncogenic stress checkpoint and enables mutant H-Ras-driven cell transformation.

The Lats2 tumor suppressor protein has been implicated earlier in promoting p53 activation in response to mitotic apparatus stress, by preventing Mdm2-driven p53 degradation. We now report that Lats2 also has a role in an ATR-Chk1-mediated stress check point in response to oncogenic H-Ras. Activated mutant H-Ras triggers the translocation of Lats2 from centrosomes into the nucleus, coupled with an increase in Lats2 protein levels. This leads to the induction of p53 activity, upregulation of proapoptotic genes, downregulation of antiapoptotic genes and eventually apoptotic cell death. Many of the cells that survive apoptosis undergo senescence. However, a fraction of the cells escape this checkpoint mechanism, despite maintaining a high mutant H-Ras expression. These escapers display increased genome instability, as evidenced by a substantial fraction of cells with micronuclei and cells with polyploid genomes. Interestingly, such cells show markedly reduced levels of Lats2, in conjunction with enhanced hypermethylation of the Lats2 gene promoter. Our findings suggest that Lats2 might have an important role in quenching H-Ras-induced transformation, whereas silencing of Lats2 expression might serve as a mechanism to enable tumor progression.

"MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer."

LATS2 is a member of the LATS tumor suppressor family. It has been implicated in regulation of the cell cycle and apoptosis. Frequent loss of heterozygosity (LOH) of LATS2 has been reported in human esophageal cancer. But, the LATS2 gene expression and its regulatory mechanism in esophageal cancer remain unclear. The present study has shown that LATS2 protein expression was mediated by miR-373 at the post-transcriptional level and inversely correlated with miR-373 amounts in esophageal cancer cell lines. Furthermore, we demonstrated that the direct inhibition of LATS2 protein was mediated by miR-373 and manipulated the expression of miR-373 to affect esophageal cancer cells growth. Moreover, this correlation was supported by data collected ex vivo, in which esophageal cancer tissues from esophageal squamous cell carcinoma (ESCC) patients were analyzed. Finally, by miRNA microarray analysis, four miRNAs including miR-373 were over-expressed in ESCC samples. Our findings reveal that miR-373 would be a potential oncogene and it participates in the carcinogenesis of human esophageal cancer by suppressing LATS2 expression.

Tumor suppressor LATS1 is a negative regulator of oncogene YAP.

LATS (large tumor suppressor) or warts is a Ser/Thr kinase that belongs to the Ndr/LATS subfamily of AGC (protein kinase A/PKG/PKC) kinases. It is a tumor suppressor gene originally isolated from Drosophila and recently isolated from mice and humans. Drosophila or mice mutant for LATS develop tumors in various tissues. Recent studies in Drosophila demonstrate that LATS is a central player of an emerging tumor suppressor pathway called the Hippo-LATS/Warts pathway that suppresses tumor growth by regulating cell proliferation, cell growth, and cell death. Although tremendous progress has been made toward understanding the roles of LATS in tumorigenesis, the kinase substrates of LATS or downstream target proteins mediating LATS function remain largely unknown. In this study, we have provided convincing evidence that the LATS1 tumor suppressor can bind to and phosphorylate transcription regulator and oncogene YAP in vitro and in vivo. We have also identified HX(R/H/K)XX(S/T) as the consensus phosphorylation sequence for LATS/Ndr kinase substrates. Significantly, we have discovered that LATS1 inactivates YAP oncogenic function by suppressing its transcription regulation of cellular genes via sequestration of YAP in the cytoplasm after phosphorylation of YAP. Finally, by using microarray analysis, we have also identified many oncogenes or tumor suppressor genes up-regulated or down-regulated by YAP. These research findings will have profound impacts on our understanding of the molecular mechanism of the LATS tumor suppressor and the emerging Hippo-LATS/Warts pathway.

The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1.

Originally identified in Drosophila melanogaster, the Warts(Wts)/Lats protein kinase has been proposed to function with two other Drosophila proteins, Hippo (Hpo) and Salvador (Sav), in the regulation of cell cycle exit and apoptosis. In mammals, two candidate Warts/Lats homologs, termed Lats1 and Lats2, have been described, and the targeted disruption of LATS1 in mice increases tumor formation. Little, however, is known about the function and regulation of human Lats kinases. Here we report that human Mst2, a STE20-family member and purported Hpo ortholog, phosphorylates and activates both Lats1 and Lats2. Deletion analysis revealed that regulation of Lats1 occurs through the C-terminal, catalytic domain. Within this domain, two regulatory phosphorylation sites were identified by mass spectrometry. These sites, S909 in the activation loop and T1079 within a hydrophobic motif, have been highly conserved during evolution. Moreover, a direct interaction was observed between Mst2 and hWW45, a putative ortholog of Drosophila Sav. These results indicate that Mst2-like kinases regulate Lats kinase activities in an evolutionarily conserved regulatory pathway. Although the function of this pathway remains poorly understood in mammals, it is intriguing that, in Drosophila, it has been linked to development and tissue homeostasis.

Putative tumor suppressor Lats2 induces apoptosis through downregulation of Bcl-2 and Bcl-x(L).

Lats2, also known as Kpm, is the second mammalian member of the novel Lats tumor suppressor gene family. Recent studies have demonstrated that Lats2 negatively regulates the cell cycle by controlling G1/S and/or G2/M transition. To further understand the role of Lats2 in the control of human cancer development, we have expressed the protein in human lung cancer cells by transduction of a replication-deficient adenovirus expressing human Lats2 (Ad-Lats2). Using a variety of techniques, including Annexin V uptake, cleavage of PARP, and DNA laddering, we have demonstrated that the ectopic expression of human Lats2 induced apoptosis in two lung cancer cell lines, A549 and H1299. Caspases-3, 7, 8, and 9 were processed in the Ad-Lats2-transduced cells; however, it was active caspase-9, not caspase-8, that initiated the caspase cascade. Inhibitors specific to caspase-3 and 9 delayed the onset of Lats2-mediated apoptosis. Western blot analysis revealed that anti-apoptotic proteins, BCL-2 and BCL-x(L), but not the pro-apoptotic protein, BAX, were downregulated in Ad-Lats2-transduced human lung cancer cells. Overexpression of either Bcl-2 or Bcl-x(L) in these cells lead to the suppression of Lats2-mediated caspase cleavage and apoptosis. These results show that Lats2 induces apoptosis through downregulating anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells.

The LATS2/KPM tumor suppressor is a negative regulator of the androgen receptor.

The androgen receptor (AR) is a member of the steroid receptor superfamily that plays critical roles in the development and maintenance of the male reproductive system and in prostate cancer. Actions of AR are controlled by interaction with several classes of coregulators. In this study, we have identified LATS2/KPM as a novel AR-interacting protein. Human LATS1 and LATS2 are tumor suppressors that are homologs of Drosophila warts/lats. The interaction surface of LATS2 is mapped to the central region of the protein, whereas the AR ligand binding domain is sufficient for this interaction. LATS2 functions as a modulator of AR by inhibiting androgen-regulated gene expression. The mechanism of LATS2-mediated repression of AR activity appears to involve the inhibition of AR NH2- and COOH-terminal interaction. Chromatin immunoprecipitation assays in human prostate carcinoma cells reveal that LATS2 and AR are present in the protein complex that binds at the promoter and enhancer regions of prostate-specific antigen, and overexpression of LATS2 results in a reduction in androgen-induced expression of endogenous prostate-specific antigen mRNA. Immunohistochemistry shows that LATS2 and AR are localized within the prostate epithelium and that LATS2 expression is lower in human prostate tumor samples than in normal prostate. The results suggest that LATS2 may play a role in AR-mediated transcription and contribute to the development of prostate cancer.

"Lats2, a putative tumor suppressor, inhibits G1/S transition."

Lats2 is a new member of the Lats tumor suppressor family. The human LATS2 gene is located at chromosome 13q11-12, which has been shown to be a hot spot (67%) for LOH in nonsmall cell lung cancer. In order to understand the function of LATS2 in the control of tumor development, we ectopically expressed mouse Lats2 via retroviral infection in NIH3T3/v-ras cells to examine whether Lats2 plays a role in suppressing tumor development and regulating cell proliferation. We have found that ectopic expression of Lats2 in NIH3T3/v-ras cells suppresses development of tumors in athymic nude mice and inhibits proliferation of NIH3T3/v-ras cells in an in vitro assay. Cell cycle profile analysis demonstrated that ectopic expression of Lats2 inhibited the G1/S transition. Further mechanistic studies revealed that cyclin E/CDK2 kinase activity was downregulated in Lats2-transduced NIH3T3/v-ras cells, while other cell cycle regulators controlling the G1/S transition were not affected. We have also shown that LATS2 kinase activity and two LATS conserved domains (LCDs) are required for Lats2 to suppress tumorigenicity and to inhibit cell growth. In addition, the LATS2 protein is cytoplasmic during interphase in NIH3T3 cells, while it becomes localized to the mitotic apparatus during mitosis. Finally, we propose a model in which a combination of mammalian Lats2 and Lats1 control cell proliferation by negatively regulating different cell cycle check points.

"Molecular cloning of a novel human protein kinase, kpm, that is homologous to warts/lats, a Drosophila tumor suppressor."

A novel human protein kinase, designated kpm, was identified and molecularly cloned. The isolated cDNA clone had an open reading frame consisting of 1088 amino acid residues with a putative kinase domain located near the carboxy-terminus. Homology search revealed that kpm belongs to a subfamily of serine/threonine protein kinases including warts/lats, a Drosophila tumor suppressor. Among these, kpm is most homologous to, but distinct from, recently reported LATS1, a human homolog of Drosophila warts/lats. Northern blot analysis disclosed that kpm is expressed as a 6.0 kb transcript in most of the tissues examined and also as an additional shorter 4.0 kb transcript in testis. Western blotting using polyclonal rabbit anti-kpm antibody detected kpm protein as a band with an apparent Mr of 150 kD. Immune complex kinase assay of HA-tagged kpm showed that kpm had kinase activity and phosphorylated itself in vitro. Studies with synchronized HeLa cells indicated that kpm protein was expressed relatively constantly throughout the cell cycle and underwent significant phosphorylation at mitotic phase. These results suggest that kpm plays a role in cell cycle progression during mitosis and its deletion or dysfunction might be involved in certain types of human cancers.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas