|
||
|
||
General information | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 27330 |
Name | RPS6KA6 |
Synonymous | PP90RSK4|RSK4;ribosomal protein S6 kinase, 90kDa, polypeptide 6;RPS6KA6;ribosomal protein S6 kinase, 90kDa, polypeptide 6 |
Definition | 90 kDa ribosomal protein S6 kinase 6|RSK-4|S6K-alpha 6|S6K-alpha-6|p90-RSK 6|p90RSK6|ribosomal S6 kinase 4|ribosomal protein S6 kinase alpha-6 |
Position | Xq21 |
Gene type | protein-coding |
Source | Count: 1; Generif |
Sentence |
Abstract |
Results support the concept that RSK4 may be an important tumor suppressor gene by modulating senescence induction and contributing to cell proliferation control in colon carcinogenesis and renal cell carcinomas. | PURPOSE: The control of senescence and its biochemical pathways is a crucial factor for understanding cell transformation. In a large RNA interference screen, the RSK4 gene was found to be related to p53-dependent arrest. The purpose of the present study was to investigate the potential role of RSK4 as a tumor suppressor gene. EXPERIMENTAL DESIGN: RSK4 expression was determined by quantitative real-time PCR and immunoblot in 30 colon and 20 renal carcinomas, and in 7 colon adenomas. Two HCT116 colon carcinoma cell lines (p53 wt and p53 null), IMR90 human fibroblasts, and E1A-expressing IMR90 cells were infected with RSK4 cDNA and/or shRNA. RSK4 expression levels were analyzed in HCT116 p53 wt or p53 null and IMR90 after senescence induction by quantitative real-time PCR and Western blot. RESULTS: The RSK4 gene was down-regulated in 27 of 30 colon carcinomas (P < 0.001), 16 of 20 renal cell carcinomas (P < 0.01), and 6 of 7 colon adenomas (P < 0.01). In vitro overexpression of RSK4 induced cell arrest and senescence features in normal fibroblasts and malignant colon carcinoma cell lines. Interestingly, in these cell lines RSK4 mRNA levels were increased both in replicative and stress-induced senescence. Moreover, IMR90 partially immortalized by RSK4 shRNA and HCT116 with this short hairpin RNA were more resistant to cisplatin treatment. Finally, cells expressing E1A or Rb short interfering RNA were resistant to RSK4-mediated senescence. CONCLUSION: These results support the concept that RSK4 may be an important tumor suppressor gene by modulating senescence induction and contributing to cell proliferation control in colon carcinogenesis and renal cell carcinomas. |
"RT-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues." | The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes. |
Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved |