Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

3622

Name

ING2

Synonymous

ING1L|p33ING2;inhibitor of growth family, member 2;ING2;inhibitor of growth family, member 2

Definition

ING1Lp|inhibitor of growth 1-like protein|inhibitor of growth protein 2|p32

Position

4q35.1

Gene type

protein-coding

Source

Count: 2; Pubmed_search,Generif

Sentence

Abstract

HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation.

Inhibitor of growth 2 (ING2) gene encodes a candidate tumor suppressor and is frequently reduced in many tumors. However, the mechanisms underlying the regulation of ING2, in particular its protein stability, are still unclear. Here we show that the homologous to E6AP carboxyl terminus (HECT)-type ubiquitin ligase Smad ubiquitination regulatory factor 1 (Smurf1) interacts with and targets ING2 for poly-ubiquitination and proteasomal degradation. Intriguingly, the ING2 binding domain in Smurf1 was mapped to the catalytic HECT domain. Furthermore, the C-terminal PHD domain of ING2 was required for Smurf1-mediated degradation. This study provided the first evidence that the stability of ING2 could be regulated by ubiquitin-mediated degradation.CI - Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma.

ING2 is a candidate tumor suppressor gene involved in cell cycle control, apoptosis and senescence. Furthermore, we have recently shown that loss of ING2 expression is associated with increased genome instability. We investigated its status in a series of 120 non-small cell lung cancer (NSCLC) by using immunohistochemistry (IHC). The results showed that ING2 protein expression is downregulated in more than 50% of NSCLC, with a higher frequency in adenocarcinoma (ADK) as compared to squamous cell carcinoma (SCC) (68% versus 45%, P=0.021). Loss of ING2 expression occurs in a high proportion of tumors from stage I and was not associated with patient's gender, age and 5-year survival. When investigating the possible mechanisms responsible for the decrease of ING2 expression, we did not observe any loss of heterozygosity or mutation in the ING2 gene. However, in 95% of the cases examined, we identified a silent single nucleotide polymorphism (SNP). By using quantitative RT-PCR, we found that ING2 loss of expression may be due to the decrease of its mRNA level. Analysis of CpG islands present in the promoter region of the ING2 gene did not allow for the detection of methylation. Mechanistically, although p53 can regulate ING2 transcription and ING2 enhances p53 activity, no correlation between ING2 and p53 IHC status was observed. Overall, these results indicate that loss of ING2 expression could contribute to lung tumorigenesis independently of p53.CI - Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

the interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network

The tumor suppressor p33ING1 is involved in DNA repair and cell cycle regulation. Furthermore, p33ING1 is a transcriptional silencer that recognizes the histone mark for trimethylated lysine 4 at histone H3. Interestingly, expression of p33ING1 and p33ING2 is able to induce premature senescence in primary human fibroblasts. The corepressor Alien is involved in gene silencing mediated by selected members of nuclear hormone receptors. In addition, Alien acts as a corepressor for E2F1, a member of the E2F cell cycle regulatory family. Furthermore, recent findings suggest that Alien is complexed with transcription factors participating in DNA repair and chromatin. Here, using a proteomic approach by surface-enhanced laser desorption ionization and mass spectrometry (SELDI-MS) combined with immunological techniques, we show that Alien interacts in vivo with the tumor suppressor p33ING1 as well as with the related tumor suppressor candidate p33ING2. The interaction of Alien with p33ING1 and p33ING2 was confirmed in vitro with GST-pull-down, suggesting a direct binding of Alien to these factors. The binding domain was mapped to a central region of Alien. Functionally, the expression of p33ING1 or p33ING2 enhances the Alien-mediated silencing, suggesting that the interaction plays a role in transcriptional regulation. Thus, the findings suggest that the identified interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network.

Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis.

The plant homodomain (PHD) of ING2 was shown to regulate p53-dependent apoptosis through phosphoinositides signaling. However, the role of a predicted leucine zipper-like (LZL) motif in N-terminus of ING2 is unclear. Here, we show that LZL motif is critical for the proper functions of ING2 in DNA repair, apoptosis and chromatin remodeling after UV irradiation. Deletion of LZL domain also abrogated the association between ING2 and p53, but not between ING2 and p300, suggesting that ING2 modulates p53-dependent chromatin remodeling, apoptosis and DNA repair by functioning as a scaffold protein to mediate the interaction between p53 and p300.

The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation.

p33ING2 is a novel candidate tumor suppressor, which has been shown to be involved in the regulation of gene transcription, cell cycle arrest, and apoptosis in a p53-dependent manner for maintaining the genomic stability. Previously, we showed that p33ING2 promoted UV-induced apoptosis in human melanoma cells. To further reveal the role of p33ING2 in cellular stress response to UV irradiation, we hypothesized that p33ING2 may enhance the repair of UV-damaged DNA, similarly to its homologue p33(ING1b). Using the host-cell reactivation assay, we show that overexpression of p33ING2 significantly enhances nucleotide excision repair of UV-induced DNA damage in melanoma cells in a p53-dependent manner. Furthermore, DNA repair is completely abolished in cells treated with p33ING2 small interfering RNA, suggesting that a physiologic level of p33ING2 is required for nucleotide excision repair. In addition, we found that p33ING2 is an essential factor for UV-induced rapid histone H4 acetylation, chromatin relaxation, and the recruitment of damage recognition protein, xeroderma pigmentosum group A protein, to the photolesions. These observations suggest that p33ING2 is required for the initial DNA damage sensing and chromatin remodeling in the nucleotide excision repair process.

"Alterations in novel candidate tumor suppressor genes, ING1 and ING2 in human lung cancer."

The ING1 gene is involved in the regulation of the cell cycle, senescence, and apoptosis and is a novel candidate tumor suppressor gene. ING2, another gene in the ING family, was identified and cloned. The functions of ING1 and ING2 largely depend on the activity of p53. To determine whether an alteration in these genes plays a role in carcinogenesis and tumor progression in lung cancer, we screened 30 human lung cancer cell lines and 31 primary lung cancer tumors for mutations in these genes using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and direct sequencing. Our findings failed to uncover any mutations in these genes. We also examined the expression of ING1 and ING2 in lung cancer cell lines that either had or lacked a p53 mutation, and in a control bronchial epithelium cell line, using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). ING1 expression was up-regulated in all 7 lung cancer cell lines that had a p53 mutation, while the expression of ING2 was down-regulated in 6 of 7 lung cancer cell lines that had a p53 mutation. These results suggest that the ING1 and ING2 genes have different roles in lung carcinogenesis and progression, and the ING2 gene may be an independent tumor suppressor candidate on p53.

ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation.

Members of the ING family of tumor suppressors regulate cell cycle progression, apoptosis, and DNA repair as important cofactors of p53. ING1 and ING3 are stable components of the mSin3A HDAC and Tip60/NuA4 HAT complexes, respectively. We now report the purification of the three remaining human ING proteins. While ING2 is in an HDAC complex similar to ING1, ING4 associates with the HBO1 HAT required for normal progression through S phase and the majority of histone H4 acetylation in vivo. ING5 fractionates with two distinct complexes containing HBO1 or nucleosomal H3-specific MOZ/MORF HATs. These ING5 HAT complexes interact with the MCM helicase and are essential for DNA replication to occur during S phase. Our data also indicate that ING subunits are crucial for acetylation of chromatin substrates. Since INGs, HBO1, and MOZ/MORF contribute to oncogenic transformation, the multisubunit assemblies characterized here underscore the critical role of epigenetic regulation in cancer development.

The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells.

The roles of p33ING2 as a tumor suppressor candidate have been shown through regulation of gene transcription, induction of cell cycle arrest, and apoptosis. As p33ING2 shares 58.9% homology with p33ING1b, we hypothesized that p33ING2 shares functional similarities with p33ING1b. We previously found that p33ING1b cooperates with p53 to enhance UVB-induced apoptosis. Here, we report that overexpression of p33ING2 enhanced apoptosis in UVB-irradiated and non-irradiated melanoma MMRU cells. We demonstrate that enhancement of apoptosis by p33ING2 requires the presence of functional p53. Furthermore, we found that overexpression of p33ING2 significantly downregulated the expression of Bcl-2 after UVB irradiation, resulting in an increased Bax/Bcl-2 ratio. Moreover, we found that p33ING2 promoted Bax translocation to mitochondria, altered the mitochondrial membrane potential, and induced cytochrome c release and thus the activation of caspases 9 and 3. In addition, we showed that under non-stress conditions p33ING2 upregulates Fas expression and activates caspase 8. Taken together, we demonstrate that p33ING2 cooperates with p53 to regulate apoptosis via activation of both the mitochondrial/intrinsic and death-receptor/extrinsic apoptotic pathways.

Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1).

Sin3 is an evolutionarily conserved corepressor that exists in different complexes with the histone deacetylases HDAC1 and HDAC2. Sin3-HDAC complexes are believed to deacetylate nucleosomes in the vicinity of Sin3-regulated promoters, resulting in a repressed chromatin structure. We have previously found that a human Sin3-HDAC complex includes HDAC1 and HDAC2, the histone-binding proteins RbAp46 and RbAp48, and two novel polypeptides SAP30 and SAP18. SAP30 is a specific component of Sin3 complexes since it is absent in other HDAC1/2-containing complexes such as NuRD. SAP30 mediates interactions with different polypeptides providing specificity to Sin3 complexes. We have identified p33ING1b, a negative growth regulator involved in the p53 pathway, as a SAP30-associated protein. Two distinct Sin3-p33ING1b-containing complexes were isolated, one of which associates with the subunits of the Brg1-based Swi/Snf chromatin remodeling complex. The N terminus of p33ING1b, which is divergent among a family of ING1 polypeptides, associates with the Sin3 complex through direct interaction with SAP30. The N-terminal domain of p33 is present in several uncharacterized human proteins. We show that overexpression of p33ING1b suppresses cell growth in a manner dependent on the intact Sin3-HDAC-interacting domain.

"Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor."

The ING1 gene encodes p33(ING1), a putative tumor suppressor for neuroblastomas and breast cancers, which has been shown to cooperate with p53 in controlling cell proliferation. We have isolated a novel human gene, ING1L, that potentially encodes a PHD-type zinc-finger protein highly homologous to p33(ING1). Fluorescence in situ hybridization and radiation-hybrid analyses assigned ING1L to human chromosome 4. Both ING1 and ING1L are expressed in a variety of human tissues, but we found ING1L expression to be significantly more pronounced in tumors from several colon-cancer patients than in normal colon tissues excised at the same surgical sites. Although the significance of this observation with respect to carcinogenesis remains to be established, the data suggest that ING1L might be involved in colon cancers through interference with signal(s) transmitted through p53 and p33(ING1).

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas