Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

4118

Name

MAL

Synonymous

-;mal, T-cell differentiation protein;MAL;mal, T-cell differentiation protein

Definition

T-cell differentiation protein MAL|T-lymphocyte maturation-associated protein|myelin and lymphocyte protein

Position

2cen-q13

Gene type

protein-coding

Source

Count: 1; Generif

Sentence

Abstract

"Data suggest that the epigenetic inactivation of MAL, as a candidate tumor suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC."

BACKGROUND: To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC), we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL) was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. RESULTS: MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004). Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2) located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%), and only one CpG island (that is, M1) was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%). A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose) polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. CONCLUSION: Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor suppressor gene, can contribute to human epithelial cell carcinoma and may be served as a biomarker in HNSCC.

The mal gene which is switched-off in all esophageal squamous cell carcinoma samples can be considered as a tumor suppressor gene

AIM: To identify the altered gene expression patterns in squamous cell carcinoma of esophagus (ESCC) in relation to adjacent normal esophageal epithelium. METHODS: Total RNA was extracted using SV total RNA isolation kit from snap frozen tissues of ESCC samples and normal esophageal epithelium far from the tumor. Radio-labeled cDNA were synthesized from equal quantities of total RNAs of tumor and normal tissues using combinations of 24 arbitrary 13-mer primers and three different anchoring oligo-dT primers and separated on sequencing gels. cDNA with considerable different amounts of signals in tumor and normal tissue were reamplified and cloned. Using southern blot, the clones of each band were controlled for false positive results caused by probable heterogeneity of cDNA population with the same size. Clones that confirmed differential expression by slot blot selected for sequencing and northern analysis. Corresponding full-length gene sequences was predicted using human genome project data, related transcripts were translated and used for various protein/motif searches to speculate their probable functions. RESULTS: The 97 genes showed different levels of cDNA in tumor and normal tissues of esophagus. The expression of mal gene was remarkably down regulated in all 10 surveyed tumor tissues. Akr1c2, a member of the aldo-keto reductase 1C family, which is involved in metabolism of sex hormones and xenobiotics, was up-regulated in 8 out of 10 inspected ESCC samples. Rab11a, RPL7, and RPL28 showed moderate levels of differential expression. Many other cDNAs remained to further studies. CONCLUSION: The mal gene which is switched-off in all ESCC samples can be considered as a tumor suppressor gene that more studies in its regulation may lead to valuable explanations in ESCC development. Akr1c2 which is up-regulated in ESCC probably plays an important role in tumor development of esophagus and may be proposed as a potential molecular target in ESCC treatments. Differential display technique in spite of many disadvantages is still a valuable technique in gene function exploration studies to find new candidates for improved ones like gene chips.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas