|
||
|
||
General information | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 4978 |
Name | OPCML |
Synonymous | IGLON1|OBCAM|OPCM;opioid binding protein/cell adhesion molecule-like;OPCML;opioid binding protein/cell adhesion molecule-like |
Definition | IgLON family member 1|opioid binding protein/cell adhesion molecule-like preprotein|opioid-binding protein/cell adhesion molecule |
Position | 11q25 |
Gene type | protein-coding |
Source | Count: 2; Pubmed_search,Generif |
Sentence |
Abstract |
"OPCML is a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies." | BACKGROUND: Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing. CONCLUSIONS/SIGNIFICANCE: Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies. |
OPCML gene promoter methylation may play an important role in the carcinogenesis of cervical carcinoma. OPCML may be a cervical carcinoma-associated candidate tumor suppressor gene. | To investigate the CpG island methylation and the mRNA expression of OPCML gene in patients with cervical carcinoma, we collected tumor and stroma cells from 36 invasive cervical carcinoma samples and 16 normal cervical tissues as well as Hela cells. Methylation specific PCR was used to detect promoter CpG island methylation status, and fluorescence quantitative RT-PCR was used to detection of OPCML gene expression. Our data showed that OPCML gene promoter methylation may play an important role in the carcinogenesis of cervical carcinoma and OPCML gene may be a cervical carcinoma-associated candidate TSG (tumor suppressor gene). |
OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. | Epithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome. EOC arises as a result of genetic alterations sustained by the ovarian surface epithelium (OSE; ref. 3). The causes of these changes are unknown but are manifest by activation of oncogenes and inactivation of tumor-suppressor genes (TSGs). Our analysis of loss of heterozygosity at 11q25 identified OPCML (also called OBCAM), a member of the IgLON family of immunoglobulin (Ig) domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules, as a candidate TSG in EOC. OPCML is frequently somatically inactivated in EOC by allele loss and by CpG island methylation. OPCML has functional characteristics consistent with TSG properties both in vitro and in vivo. A somatic missense mutation from an individual with EOC shows clear evidence of loss of function. These findings suggest that OPCML is an excellent candidate for the 11q25 ovarian cancer TSG. This is the first description to our knowledge of the involvement of the IgLON family in cancer. |
Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved |