Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

580

Name

BARD1

Synonymous

-;BRCA1 associated RING domain 1;BARD1;BRCA1 associated RING domain 1

Definition

BARD-1|BRCA1 associated RING domain 1 isoform alfa|BRCA1 associated RING domain 1 isoform beta|BRCA1 associated RING domain 1 isoform delta|BRCA1 associated RING domain 1 isoform epsilon|BRCA1 associated RING domain 1 isoform eta|BRCA1 associated RING dom

Position

2q34-q35

Gene type

protein-coding

Source

Count: 3; Pubmed_search,TAG,Generif

Sentence

Abstract

Hyperphosphorylation of the BARD1 tumor suppressor in mitotic cells.

Although the BRCA1 tumor suppressor has been implicated in a number of cellular processes, it plays an especially important role in the DNA damage response as a regulator of cell cycle checkpoints and DNA repair pathways. In vivo, BRCA1 exists as a heterodimer with the BARD1 protein, and many of its biological functions are mediated by the BRCA1-BARD1 complex. Here, we show that BARD1 is phosphorylated in a cell cycle-dependent manner and that the hyperphosphorylated forms of BARD1 predominate during M phase. By mobility shift analysis and mass spectrometry, we have identified seven sites of mitotic phosphorylation within BARD1. All sites exist within either an SP or TP sequence, and two sites resemble the consensus motif recognized by cyclin-dependent kinases. To examine the functional consequences of BARD1 phosphorylation, we used a gene targeting knock-in approach to generate isogenic cell lines that express either wild-type or mutant forms of the BARD1 polypeptide. Analysis of these lines in clonogenic survival assays revealed that cells bearing phosphorylation site mutations are hypersensitive to mitomycin C, a genotoxic agent that induces interstrand DNA cross-links. These results implicate BARD1 phosphorylation in the cellular response to DNA damage.

"differential gene expression of Bard1, a tumor suppressor gene, plays a significant role in the proliferation of breast cancer"

TGF beta/Smad signaling pathway members are potent tumor suppressors for many types of cancers. We hypothesize that breast tumors differentially express these genes and that this expression pattern plays a role in the proliferation of breast cancer. We examined the mRNA levels of TIEG, Smad7, Smad2, and Bard1 using real-time RT/PCR in 14 normal breast, five non-invasive, 57 invasive (including 29 with outcome data), and five metastatic breast tumor tissues. TIEG and Smad7 mRNA levels were lower in non-invasive tumors compared to normal breast tissues. TIEG, Bard1, and Smad2 mRNA levels were lower in invasive cancers compared to normal breast tissues. In addition, TIEG, Smad2, and Bard1, provided discriminatory ability to potentially distinguish between normal and tumor samples, N- and N+ tumors, and N-/good (no recurrence for at least 5 years) and N-/bad (recurrence within 3 years) outcome patients. TIEG mRNA levels accurately discriminated between normal breast tissue and primary tumors with a sensitivity and specificity of 96 and 93%, respectively. TIEG, in combination with Smad2, distinguished between N+ and N- primary tumors with a sensitivity and specificity of 75 and 85%, respectively. TIEG in combination with Bard1 discriminated between N-/bad outcome from N-/good tumors with a sensitivity and specificity of 83 and 82%, respectively. Our results support the hypothesis that the differential gene expression of TIEG, Smad2, and Bard1, which are tumor suppressor genes, plays a significant role in the proliferation of breast cancer. Further investigation is necessary to validate the ability of these genes to discriminate between different populations of breast cancer patients.

"The remarkable similarities between the mammary carcinomas of Bard1-, Brca1-, and Bard1/Brca1-mutant mice indicate that the tumor suppressor activities of both genes are mediated through the BRCA1/BARD1 heterodimer."

Women with germ-line mutations of the BRCA1 tumor suppressor gene are highly susceptible to breast and ovarian cancer. The protein product of BRCA1 is involved in a broad spectrum of biological processes and interacts with many diverse proteins. One of these, BARD1, associates with BRCA1 to form a heterodimeric complex that is enzymatically active as an ubiquitin E3 ligase. Although the BRCA1/BARD1 heterodimer has been implicated in several aspects of BRCA1 function, its role in tumor suppression has not been evaluated. To address this question, we generated mouse strains carrying conditional alleles of either Bard1 or Brca1 and used Cre recombination to inactivate these genes in mammary epithelial cells. Significantly, the conditional Bard1- and Brca1-mutant mice developed breast carcinomas that are indistinguishable from each other (and from those of double conditional Bard1/Brca1-mutant animals) with respect to their frequency, latency, histopathology, and cytogenetic features. Reminiscent of the basal-like breast carcinomas seen in human BRCA1 mutation carriers, these tumors are "triple negative" for estrogen and progesterone receptor expression and HER2/neu amplification. They also express basal cytokeratins CK5 and CK14, have an elevated frequency of p53 lesions, and display high levels of chromosomal instability. The remarkable similarities between the mammary carcinomas of Bard1-, Brca1-, and Bard1/Brca1-mutant mice indicate that the tumor suppressor activities of both genes are mediated through the BRCA1/BARD1 heterodimer.

Structural requirements for the BARD1 tumor suppressor in chromosomal stability and homology-directed DNA repair.

The BRCA1 tumor suppressor exists as a heterodimeric complex with BARD1, and this complex is thought to mediate many of the functions ascribed to BRCA1, including its role in tumor suppression. The two proteins share a common structural organization that features an N-terminal RING domain and two C-terminal BRCT motifs, whereas BARD1 alone also contains three tandem ankyrin repeats. In normal cells, the BRCA1/BARD1 heterodimer is believed to enhance chromosome stability by promoting homology-directed repair (HDR) of double strand DNA breaks. Here we have investigated the structural requirements for BARD1 in this process by complementation of Bard1-null mouse mammary carcinoma cells. Our results demonstrate that the ankyrin and BRCT motifs of BARD1 are each essential for both chromosome stability and HDR. Tandem BRCT motifs, including those found at the C terminus of BARD1, are known to form a phosphoprotein recognition module. Nonetheless, the HDR function of BARD1 was not perturbed by synthetic mutations predicted to ablate the phospho-recognition activity of its BRCT sequences, suggesting that some functions of the BRCT domains are not dependent on their ability to bind phosphorylated ligands. Also, cancer-associated missense mutations in the BRCT domains of BARD1 (e.g. C557S, Q564H, V695L, and S761N) have been observed in patients with breast, ovarian, and endometrial tumors. However, none of these was found to affect the HDR activity of BARD1, suggesting that any increased cancer risk conferred by these mutations is not because of defects in this repair mechanism.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas